【24h】

OPTOFLUIDICS

机译:光学

获取原文
获取原文并翻译 | 示例

摘要

Optical devices which incorporate liquids as a fundamental part of the structure can be traced at least as far back as the eighteenth century where rotating pools of mercury were proposed as a simple technique to create smooth mirrors for use in reflecting telescopes. The development of modern microfluidic and nanofluidic devices has enabled a present day equivalent of such devices centered on the marriage of fluidics and optics which we refer to as "Optofluidics." We review here two optofluidic technologies of relevance to microsystems for security. For the first of these, I will focus on our efforts to novel biomolecular optical sensing architectures for pathogen detection and genetic screening. Two approaches will be discussed; the first exploiting optical resonance in silicon photonic devices and the second using Surface Enhanced Raman Spectroscopy (SERS) based detection. Preliminary data for serotype specific Dengue virus detection and Interleukin immunoassay will be presented. In the second area we will demonstrate how photonic devices can be used to drive micro- and nanoscale transport processes when traditional mechanisms (e.g. pressure and electrokinetics) fail. Here it will be demonstrated how the concentration and amplification of the optical field inside slot waveguides and ring resonators results in extremely large scattering and polarization forces. These forces can be used to trap organic and inorganic targets ranging in size from tens of microns to handfuls of nanometers. Some of the advanced analytical, numerical and experimental techniques used to investigate and design these systems will be discussed as well as issues relating to integration and their fabrication.
机译:结合液体作为结构基本部分的光学设备至少可以追溯到18世纪,当时提出了旋转汞池作为一种简单技术来创建用于反射望远镜的平滑镜的技术。现代微流控和纳米流控设备的发展使今天的此类设备以流体学和光学学的结合为中心,我们称之为“光流体学”。为了安全起见,我们在这里回顾两种与微系统有关的光流技术。对于其中的第一个,我将专注于我们对用于病原体检测和基因筛选的新型生物分子光学传感体系结构的努力。将讨论两种方法;第一次利用硅光子器件中的光学共振,第二次利用基于表面增强拉曼光谱(SERS)的检测。将提供血清型特异性登革热病毒检测和白介素免疫测定的初步数据。在第二个领域中,我们将演示当传统机制(例如压力和电动动力学)失效时,光子器件如何用于驱动微米级和纳米级的传输过程。在此将证明缝隙波导和环形谐振器内部光场的集中和放大如何导致极大的散射和极化力。这些力可用于捕获大小范围从几十微米到几纳米的有机和无机目标。将讨论一些用于研究和设计这些系统的高级分析,数值和实验技术,以及与集成及其制造有关的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号