首页> 外文会议>Metamaterials II; Proceedings of SPIE-The International Society for Optical Engineering; vol.6581 >Metal-dielectric composite optical structures with novel dynamic tunable localized surface-plasmonic effects
【24h】

Metal-dielectric composite optical structures with novel dynamic tunable localized surface-plasmonic effects

机译:具有新型动态可调局部表面等离子体效应的金属介电复合光学结构

获取原文
获取原文并翻译 | 示例

摘要

A tunable MEMS sub-wavelength surface plasmonic apparatus is proposed based on localized surface-plasmon resonance effects. Optical tunneling is obtained through Surface Plasmon Polaritons (SPP) and Localized Surface Plasmon (LSP) by using a periodic sub-wavelength narrow-grooved metal-dielectric-metal (MDM) composite structure. Only p-polarized light can excite the SPP and LSP resonantly. The excited LSP mode with a strong field enhancement at the incident side grooves, resonantly excites the LSP mode on the other side of the thin structure. Then, with matched radiative modes, photons are radiated and tunneled. Nano/micro electromechanical actuation of small elastic deformations makes it possible to dynamically tune the localized surface plasmons via shape changes. Numerical simulations based on the Finite-Difference Time-Domain (FDTD) method are carried out on sub-wavelength structures and the results discussed. The MDM concept provides a new method to achieve real-time, dynamic tunable control and manipulation of light transmission and reflection via LSP which is different from novel tunable SPP apparatus where refractive index modulation is obtained using a voltage-controlled liquid crystal or tunable spaced air-gapped micro-prisms based on a convential SPP arrangement. This is important for the manipulation of LSP and plasmonic device design applications. Furthermore, a proposed Localized Surface Plasmon Resonance (LSPR) sensor mechanism with MDM-LSPR are demonstrated with numerical results. We believe that the MDM-LSPR is a novel principle for LSPR sensors in dielectric sensing for chemical or biologic applications which compares to current LSPR sensors with nano-particle LSPR and nanosphere lithography (NSL).
机译:提出了一种基于局部表面等离子体共振效应的可调谐MEMS亚波长表面等离子体装置。通过使用周期性亚波长窄沟槽金属-介电金属(MDM)复合结构,通过表面等离激元极化子(SPP)和局部表面等离激元(LSP)获得光隧道效应。只有p偏振光可以共振激发SPP和LSP。在入射侧凹槽处具有强场增强的激发LSP模式在薄结构的另一侧共振激发LSP模式。然后,在匹配的辐射模式下,光子被辐射并隧穿。微小弹性变形的纳米/微机电致动使得可以通过形状变化动态地调节局部表面等离激元。对亚波长结构进行了基于时域有限差分(FDTD)方法的数值模拟,并对结果进行了讨论。 MDM概念提供了一种新的方法来实现通过LSP进行光透射和反射的实时,动态可调控制和操纵,这与新颖的可调SPP装置不同,在新型SPP装置中,使用电压控制的液晶或可调间隔的空气获得折射率调制基于常规SPP布置的无间隙微棱镜。这对于LSP和等离子设备设计应用程序的操作很重要。此外,用数值结果证明了提出的带有MDM-LSPR的局域表面等离子体共振(LSPR)传感器机制。我们相信,MDM-LSPR是用于化学或生物应用介电传感中LSPR传感器的一种新颖原理,与当前具有纳米粒子LSPR和纳米球光刻(NSL)的LSPR传感器相比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号