首页> 外文会议>Meeting of The Electrochemical Society;Symposium on lithium-ion batteries >First Principles Study of Li-site Doping Effect on the Properties of LiMnO_2 and Li_2MnO_3 Cathode Materials
【24h】

First Principles Study of Li-site Doping Effect on the Properties of LiMnO_2 and Li_2MnO_3 Cathode Materials

机译:锂位掺杂对LiMnO_2和Li_2MnO_3阴极材料性能影响的第一性原理研究

获取原文

摘要

Due to a high voltage of 4.6 V and large practical capacity of ~~260 mAh/g, the over-lithiated-oxides (OLOs) which are often represented as Li_2MnO_3-LiMO_2 (M = Mn, Co, Ni), have been intensely investigated as a promising candidate of the next generation cathode materials for Li-ion battery. The Li_2MnO_3 composite structure plays an important role in providing high capacity and phase stability to the system. However, during cathode charge-discharge operation, Li_2MnO_3 is unstable and partly transforms into LiMnO_2, indicating that the phase used in practice has mixed both Li_2MnO_3 and LiMnO_2. In this work, the effects of Li-site doping from 10 cationic dopants (Mg, Ti, V, Nb, Fe, Ru, Co, Ni, Cu, Al) on the electrochemical properties of both oxides are studied using density functional theory. The calculations show that, comparing with the Mn-site doped phases, Li-site doping is thermodynamically unstable for the ground states, but the small transition barriers can be easily overcome under high thermal fluctuations during the realistic cathode synthesis process. The redox potentials of both oxides can be lowered by most of the Li-site dopants. For example, Nb strongly lowers the redox potential of the LiMnO_2 phase, and Ru shows an unexpected effect on the Li_2MnO, phase: it activates the Li atoms in the Li-layer and, at the same time, it immobilizes the Li atoms in the Li-Mn mixed-layer by increasing the redox potential. These results support the experimental observations about Li-site doping and provide an explanation about the effects of Li-site doping on the electrochemical properties.
机译:由于4.6 V的高电压和~~ 260 mAh / g的大实际容量,通常被表示为Li_2MnO_3-LiMO_2(M = Mn,Co,Ni)的过锂化氧化物(OLO)变得非常强烈。作为下一代锂离子电池正极材料的有希望的候选者进行了研究。 Li_2MnO_3复合结构在为系统提供高容量和相稳定性方面起着重要作用。然而,在阴极充放电操作期间,Li_2MnO_3不稳定并且部分地转变成LiMnO_2,表明实际上使用的相已经混合了Li_2MnO_3和LiMnO_2。在这项工作中,使用密度泛函理论研究了10种阳离子掺杂剂(Mg,Ti,V,Nb,Fe,Ru,Co,Ni,Cu,Al)的Li现场掺杂对两种氧化物的电化学性能的影响。计算表明,与Mn-位掺杂相相比,Li-位掺杂对于基态在热力学上是不稳定的,但是在实际的阴极合成过程中,在高的温度波动下可以轻松克服小的过渡势垒。大部分的Li位掺杂剂都可以降低两种氧化物的氧化还原电位。例如,Nb大大降低了LiMnO_2相的氧化还原电势,而Ru对Li_2MnO相具有出乎意料的影响:它激活了Li层中的Li原子,同时又将Li层中的Li原子固定了下来。锂锰混合层通过增加氧化还原电位。这些结果支持了有关锂位点掺杂的实验观察,并提供了有关锂位点掺杂对电化学性能的影响的解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号