首页> 外文会议>ASME International Conference on Nanochannels, Microchannels, and Minichannels >EFFECT OF PERIODIC FLOW STRUCTURE ON HEAT TRANSFER IN MILLISCALE CONFINED IMPINGING NEWTONIAN AND NON-NEWTONIAN FLOW
【24h】

EFFECT OF PERIODIC FLOW STRUCTURE ON HEAT TRANSFER IN MILLISCALE CONFINED IMPINGING NEWTONIAN AND NON-NEWTONIAN FLOW

机译:周期性流动结构对毫师热传递的影响临危牛顿和非牛顿流动

获取原文

摘要

Impinging flows are widely used to enhance convective heat transfer by promoting separation, recirculation and higher rates of local convection. We consider unsteady flow and heat transfer effects in a prototypical T-shaped geometry as an impinging jet. Depending on the relative length scales, the steady laminar flow in this geometry may lose stability and transition to time periodic flow even at a low Reynolds number. A key feature of the periodic structure is the presence of 'twin' circulation regions adjacent to the jet column, and separation vortices anchored at the impinging surface in place of the wall jet in steady flow. The separation vortices are located above shear layers lying along the confining plane of the geometry which is flush with the jet exit. Consequently, convective heat transfer is enhanced across this plane. We present calculations to show the effect of the structure of the periodic flow on heat transfer rates across the two parallel surfaces. For a shear thinning fluid the local Nusselt number at the confining surface averaged over a long length scale (~ 50 times the nozzle width) is more than twice as large compared to that in steady flow, while for the Newtonian fluid the mean Nusselt number increases about 60%. A mild increase in the transport rate across the impinging surface is also observed. Thus flow periodicity due to instability of the steady flow field provides a mechanism to increase the total heat transfer rate across the two surfaces.
机译:撞击流被广泛用于增强通过促进分离,再循环和局部对流率较高的对流热传递。我们考虑一个典型的T形几何形状的碰撞射流不稳定流动和传热效果。根据相对长度尺度,在这种几何形状稳定层流甚至可能在低雷诺数失去稳定和过渡时间定期流动。周期性结构的一个关键特性是在发生在稳流的壁射流的冲击表面锚定的“双”循环邻近喷射列区域,和分离涡旋的存在。分离涡位于上方沿几何学的限制平面,其与射流出口冲洗躺在剪切层。因此,对流热传递跨过此平面增强。我们目前的计算,以显示在两个平行的表面的热量传输率的周期性流动结构的影响。对于剪切稀化流体在限制表面局部努塞尔数平均超过一个长的长度尺度(〜50倍,喷嘴宽度)的两倍以上的大相比,在稳流,而对于牛顿流体的平均努塞尔数的增加约60%。在整个冲击表面传送速率轻度增加,也观察到。因而流动周期性由于稳流场的不稳定性提供了一种机制以增加跨越两个表面的总传热速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号