首页> 外文会议>ASME international conference on nanochannels, microchannels and minichannels >EFFECT OF PERIODIC FLOW STRUCTURE ON HEAT TRANSFER IN MILLISCALE CONFINED IMPINGING NEWTONIAN AND NON-NEWTONIAN FLOW
【24h】

EFFECT OF PERIODIC FLOW STRUCTURE ON HEAT TRANSFER IN MILLISCALE CONFINED IMPINGING NEWTONIAN AND NON-NEWTONIAN FLOW

机译:周期约束结构对微约束撞击牛顿流和非牛顿流的传热的影响

获取原文

摘要

Impinging flows are widely used to enhance convective heat transfer by promoting separation, recirculation and higher rates of local convection. We consider unsteady flow and heat transfer effects in a prototypical T-shaped geometry as an impinging jet. Depending on the relative length scales, the steady laminar flow in this geometry may lose stability and transition to time periodic flow even at a low Reynolds number. A key feature of the periodic structure is the presence of 'twin' circulation regions adjacent to the jet column, and separation vortices anchored at the impinging surface in place of the wall jet in steady flow. The separation vortices are located above shear layers lying along the confining plane of the geometry which is flush with the jet exit. Consequently, convective heat transfer is enhanced across this plane. We present calculations to show the effect of the structure of the periodic flow on heat transfer rates across the two parallel surfaces. For a shear thinning fluid the local Nusselt number at the confining surface averaged over a long length scale (~ 50 times the nozzle width) is more than twice as large compared to that in steady flow, while for the Newtonian fluid the mean Nusselt number increases about 60%. A mild increase in the transport rate across the impinging surface is also observed. Thus flow periodicity due to instability of the steady flow field provides a mechanism to increase the total heat transfer rate across the two surfaces.
机译:撞击流被广泛用于通过促进分离,再循环和提高局部对流率来增强对流传热。我们将典型的T形几何形状中的非稳态流动和传热效果视为撞击射流。取决于相对长度尺度,即使在低雷诺数下,这种几何形状的稳定层流也可能失去稳定性并过渡到时间周期性流。周期性结构的关键特征是与射流柱相邻的“双”循环区的存在,并且固定涡流代替壁射流以稳定流动的方式固定在撞击面上,分离涡流固定在撞击面上。分离涡流位于剪切层上方,剪切层沿着与射流出口齐平的几何形状的约束平面分布。因此,对流传热在该平面上得以增强。我们提出了一些计算,以显示周期性流动的结构对两个平行表面上的传热速率的影响。对于剪切稀化流体,在长期尺度上平均(约50倍喷嘴宽度)在密闭表面上的局部Nusselt数是稳态流的两倍,而对于牛顿流体,平均Nusselt数增加约60%还观察到穿过撞击表面的传输速率有轻微的增加。因此,由于稳定​​流场的不稳定性而引起的流动周期性提供了一种机制来增加跨两个表面的总传热速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号