首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >SYNCHROTRON XRD MEASUREMENTS OF THERMAL BARRIER COATING CONFIGURATIONS WITH RARE EARTH ELEMENTS FOR PHOSPHOR THERMOMETRY
【24h】

SYNCHROTRON XRD MEASUREMENTS OF THERMAL BARRIER COATING CONFIGURATIONS WITH RARE EARTH ELEMENTS FOR PHOSPHOR THERMOMETRY

机译:Synchrotron XRD测量热屏障涂层配置,稀土元素用于磷光体温度

获取原文

摘要

The development of temperature sensing Thermal Barrier Coating (TBC) systems by phosphor thermometry has significant potential to achieve accurate non-destructive temperature measurement in the coating. The doping of coatings using rare earth elements is a viable option to enable the temperature measurement by the virtue of their luminescence. While facilitating the temperature sensing, however, the thermo-mechanical and thermo-chemical stability of the coating must be maintained under extreme operating conditions. In this work, TBC configurations including a doped layer placed at the top or the bottom of the top coat have been fabricated via Air Plasma Spray (APS) using Yttria-Stabilized Zirconia (YSZ) that contains Europium (Eu) dopant. The TBC configurations have been characterized using high energy synchrotron X-ray diffraction (XRD) at both room temperature and high temperature. The TBC samples have been subjected to a single cycle thermal load during XRD data collection. The residual strain in the top coats of the TBCs have been quantified using XRD data. Residual strain in the top coat of the regular TBC configuration has been measured to be in the range of-0.8 × 10~(-4)to-1.0 × 10~(-4) forout-of-plane strain (e_(11)) and 0.5 × 10~(-4) to 2.0 × 10~(-4) for in-plane strain (e_(22)). The doped layer above the top coat was found to most significantly affect the spatial strain distribution across depth in the YSZ layer by increasing the strain magnitudes closer to the bond coat. However, the difference in strain distribution due to doped layers was found to be less than 1.0 × 10~(-4), which is close to the experimental limit. Thus, the doped layer did not significantly alter the overall residual strain states of the coating.
机译:通过磷光体温度的温度传感热阻挡涂层(TBC)系统的开发具有显着的潜力,可以在涂层中实现精确的非破坏性温度测量。使用稀土元素的涂层掺杂是一种可行的选择,以使温度测量通过其发光。然而,在促进温度传感的同时,必须在极端操作条件下保持涂层的热机械和热化学稳定性。在该工作中,包括含有含有铕(EU)掺杂剂的yTTRIA稳定的氧化锆(YSZ),通过空气等离子体喷雾(AP)制造了包括放置在顶层顶部或底部的掺杂层的TBC配置。已经在室温和高温下使用高能同步X射线衍射(XRD)来表征TBC配置。在XRD数据收集期间,TBC样品经过单循环热负荷。使用XRD数据量化了TBC的顶部涂层中的残留菌株。已经测量了常规TBC配置的顶层涂层中的残余应变为-10×10〜(-4)至-1.0×10〜(-4)面向平面应变(E_(11)用于面内应变的0.5×10〜(-4)至2.0×10〜(-4)(E_(22))。发现顶层涂层上方的掺杂层最显着影响YSZ层中深度的空间应变分布,通过增加更接近粘合涂层的应变幅度。然而,发现由于掺杂层引起的应变分布的差异小于1.0×10〜(-4),其接近实验极限。因此,掺杂层没有显着改变涂层的整个残留菌株状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号