首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >COUPLING OF MAINSTREAM VELOCITY FLUCTUATIONS WITH PLENUM FED FILM COOLING JETS
【24h】

COUPLING OF MAINSTREAM VELOCITY FLUCTUATIONS WITH PLENUM FED FILM COOLING JETS

机译:压力料加膜冷却喷射主流速度波动的主流速度波动的耦合

获取原文

摘要

Modern gas turbine engines require film cooling to meet efficiency requirements. An integral part of the design process is the numerical simulation of the heat transfer to film cooled components and the resulting metal temperature. Industry design simulations are frequently performed using steady Reynolds averaged Navier-Stokes (RANS) simulations. However, much research has shown limitations in the use of steady RANS to predict film cooling performance. Prediction errors are typically attributed to poor modelling of turbulent mixing. Recent experiments measuring time-accurate film cooling jet behavior have indicated unsteady jet motions in sweeping and separation-reattachment modes contribute to the dispersion of the cooling jet along the cooled surface and the resulting time-averaged distribution. This study identifies the physical phenomena acting on film cooling jets issuing from fan-shaped film cooling holes, including acoustic resonance, which drive the unsteady behavior. Turbulent velocity fluctuations in the stream-wise direction cause corresponding fluctuations in the film cooling jet blowing ratio, which in turn reduces the time-averaged film cooling performance compared to the steady behavior that would be predicted with time-averaged blowing ratio. The plenum film cooling supply geometry acts as a Helmholtz resonator. An unsteady RANS (URANS) simulation including unsteady forcing is compared to experimental data. Helmholtz frequency excitation causes film cooling jet motions that qualitatively match the experiment. Resonant behavior causes the periods of lower blowing ratio to contribute to coolant dissipation rather than increased surface coverage. Results from URANS simulations demonstrate that replicating the unsteady jet motion is an important step in film cooling predictions. Starting with a steady baseline prediction, the URANS model used in this study is observed to reduce the overprediction of lateral average effectiveness by more than 50%. underlining the advantages of modeling the unsteady components of the Navier-Stokes equations.
机译:现代燃气涡轮发动机需要薄膜冷却以满足效率要求。设计过程的整体部分是传热与薄膜冷却部件和所得金属温度的数值模拟。工业设计模拟经常使用稳定的雷诺斯平均Navier-Stokes(RANS)模拟来执行。然而,许多研究表明了使用稳定的RAN来预测膜冷却性能的局限性。预测误差通常归因于湍流混合的差。最近的实验测量时间 - 精确的薄膜冷却射流行为表明了扫描中的不稳定喷射运动,并且分离 - 重新连接模式有助于沿着冷却表面的冷却射流的分散和所得到的时间平均分布。该研究识别出于从扇形薄膜冷却孔发出的薄膜冷却喷射器的物理现象,包括声谐振,这驱动了不稳定的行为。湍流方向上的湍流速度波动导致薄膜冷却射流吹出比中的相应波动,这反过来减少了与将时间平均吹出比率预测的稳定行为相比的时间平均膜冷却性能。增压室薄膜冷却供应几何形状充当亥姆霍兹谐振器。与实验数据相比,不稳定的RAN(urans)模拟包括不稳定强制。 Helmholtz频率励磁导致薄膜冷却喷射运动,定义匹配实验。共振行为导致较低吹吹率的时期,以促进冷却剂耗散而不是增加的表面覆盖。 urans模拟结果表明,复制不稳定的喷射运动是薄膜冷却预测的重要步骤。从稳定的基线预测开始,观察到本研究中使用的尿素模型以减少横向平均效率的过度规定超过50%。强调建模Navier-Stokes方程的不稳定组件的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号