首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >EVOLUTIONARY ALGORITHM FOR ENHANCED GAS PATH ANALYSIS IN TURBOFAN ENGINES
【24h】

EVOLUTIONARY ALGORITHM FOR ENHANCED GAS PATH ANALYSIS IN TURBOFAN ENGINES

机译:涡轮箱发动机增强煤气路径分析的进化算法

获取原文

摘要

Adaptive modelling (AM) based Gas Path Analysis (GPA) is a powerful diagnostic and prognostic technique for turbofan engine maintenance. This involves the assessment of turbofan component condition using thermodynamic models that can iteratively adapt to measurements values in the gas path by changing component condition parameters. The problem with this approach is that newer turbofan engines such as the General Electric GEnx-1B have fewer gas path sensors installed causing the AM equation systems to become underdetermined. To overcome this problem, a novel approach has been developed that combines the AM model with an Evolutionary Algorithm (EA) optimization scheme and applies it to multiple operating points. Additionally, these newer turbofan engines provide performance data continuously during flight. Information on variable geometry and bleed valve position, active clearance control state and power off-take is included and can be accounted for to further enhance AM model accuracy. A procedure is proposed where the selection of operating points is based on steady-state stability requirements, cycle model operating point uncertainty and parameter outlier filtering. The Gas turbine Simulation Program (GSP) is used as the non-linear GPA modelling environment. A Multiple Operating Point Analysis (MOPA) is chosen to overcome the problem of underdetermination by utilizing multiple data sets at different operating points. The EA finds the best fit of health parameter deviations by minimizing the multi-point objective function using the GSP AM model. A sub-form of the EA class named Differential Evolution (DE) has been chosen as the optimizer. Like all EAs, DE is a parallel direct search method in which a population of parameter vectors evolves following genetic operations towards an optimum output candidate. The resulting hybrid GPA tool has been verified by solving for different simulated deterioration cases of a GSP model. The tool can identify the direction and magnitude of condition deviation of 10 health parameters using 6 gas path sensors. It has subsequently been validated using historical in-flight data of the GEnx-1B engine. It has demonstrated successful tracking of engine component condition for all 10 health parameters and identification of events such as turbine blade failure and water washes. The authors conclude that the tool has proven significant potential to enhance turbofan engine condition monitoring accuracy for minimizing maintenance costs and increasing safety and reliability.
机译:基于自适应建模(AM)的气体路径分析(GPA)是涡扇发动机维护的强大诊断和预后技术。这涉及使用热力学模型评估ThandoOm组件条件,其通过改变组件条件参数,可以迭代地适应测量气体路径中的值。这种方法的问题是诸如通用电气Genx-1b的较新的涡轮通风发动机具有安装的气体路径传感器,使AM等式系统变得有未定量。为了克服这个问题,已经开发了一种新的方法,其将AM模型与进化算法(EA)优化方案相结合,并将其应用于多个操作点。此外,这些较新的涡轮机发动机在飞行期间连续提供性能数据。包括有关变量几何和漏洞阀门位置,主动间隙控制状态和断电的信息,并且可以考虑进一步提高AM模型精度。提出了一种过程,其中操作点的选择基于稳态稳定性要求,周期模型操作点不确定性和参数异常滤波。燃气轮机仿真程序(GSP)用作非线性GPA建模环境。选择多个操作点分析(MOPA)来克服通过在不同操作点处的多个数据集来克服未定量的问题。通过使用GSP AM型号最小化多点目标函数,EA通过最小化多点目标函数来找到最佳健康参数偏差。选择了EA类命名差分演进(de)的子形式作为优化器。与所有EA一样,DE是一种并行直接搜索方法,其中参数向量群体在攻击最佳输出候选的遗传操作之后发展。通过求解GSP模型的不同模拟劣化外壳来验证所得到的混合GPA工具。该工具可以使用6个气体路径传感器识别10个健康参数的条件偏差的方向和幅度。随后使用Genx-1B发动机的历史飞行数据进行了验证。它已经证明了所有10个健康参数的发动机部件条件的成功跟踪,以及涡轮机叶片失效和水洗等事件的识别。作者得出结论,该工具已证明增强涡扇发动机状态监测精度的显着潜力,以最大限度地减少维护成本和提高安全性和可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号