首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >ACCELERATED CREEP TEST (ACT) QUALIFICATION OF CREEP-RESISTANCE USING THE WCS CONSTITUTIVE MODEL AND STEPPED ISOSTRESS METHOD (SSM)
【24h】

ACCELERATED CREEP TEST (ACT) QUALIFICATION OF CREEP-RESISTANCE USING THE WCS CONSTITUTIVE MODEL AND STEPPED ISOSTRESS METHOD (SSM)

机译:加速蠕变试验(ACT)使用WCS本构模型和阶梯式异位法(SSM)的蠕变电阻鉴定

获取原文

摘要

In this study, a qualification of accelerated creep-resistance of Inconel 718 is assessed using the novel Wilshire-Cano-Stewart (WCS) model and the stepped isostress method (SSM) and predictions are made to conventional creep data. Conventional creep testing (CCT) is a long-term continuous process, in fact, the ASME B&PV Ⅲ requires that 10,000 - hours of experiments must be conducted to each heat for materials employed in boilers and or pressure vessel components. This process is costly and not feasible for rapid development of new materials. As an alternative, accelerated creep testing techniques have been developed to reduce the time needed to characterize the creep resistance of materials. Most techniques are based upon the time-temperature-stress superposition principle (TTSSP) that predicts minimum-creep-strain-rate (MCSR) and stress-rupture behaviors but lack the ability to predict creep deformation and consider deformation mechanisms that occur for experiments of longer duration. The stepped isostress method (SSM) has been developed which enables the prediction of creep deformation response as well as reduce the time needed for qualification of materials. The SSM approach has been successful for polymer, polymeric composites, and recently has been introduced for metals. In this study, the WCS constitutive model, calibrated to SSM test data, qualifies the creep resistance of Inconel 718 at 750°C and predictions are compared to CCT data. The WCS model has proven to make long-term predictions for stress-rupture, minimum-creep-strain-rate (MCSR), creep deformation, and damage in metallic materials. The SSM varies stress levels after time interval adding damage to the material, which can be tracked bv the WCS model. The SSM data is calibrated into the model and the WCS model generates realistic predictions of stress-rupture. MSCR, damage, and creep deformation. The calibrated material constants are used to generate predictions of stress-rupture and are post-audit validated using the National Institute of Material Science (NIMS) database. Similarly, the MCSR predictions are compared from previous studies. Finally the creep deformation predictions are compared with real data and is determined that the results are well in between the expected boundaries. Material characterization and mechanical properties can be determined at a faster rate and with a more cost-effective method. This is beneficial for multiple applications such as in additive manufacturing, composites, spacecraft, and Industrial Gas Turbines (IGT).
机译:在该研究中,使用新颖的Wilshire-Cano-Stewart(WCS)模型来评估Inconel 718的加速蠕变电阻的资格,并且对传统的蠕变数据进行阶梯式异位方法(SSM)和预测。常规蠕变测试(CCT)是一种长期连续过程,其实ASME B&PVⅢ要求10,000小时的实验必须对锅炉和或压力容器组分中使用的材料进行每种热量进行。这一过程昂贵,不可能快速开发新材料。作为一种替代方案,已经开发出加速蠕变测试技术以减少表征材料蠕变电阻所需的时间。大多数技术基于预测最小蠕变 - 应变率(MCSR)和应力破裂行为的时间温度应力叠加原理(TTSSP),但缺乏预测蠕变变形的能力,并考虑实验发生的变形机制持续时间更长。已经开发了阶梯式异位方法(SSM),这使得能够预测蠕变变形响应以及减少材料资格所需的时间。 SSM方法已经成功用于聚合物,聚合物复合材料,最近已被引入金属。在该研究中,校准到SSM测试数据的WCS本构模型,符合第750°C在750°C处的蠕变电阻,并将预测与CCT数据进行比较。 WCS模型已被证明是对压力破裂,最小蠕变 - 应变速率(MCSR),蠕变变形和金属材料损坏的长期预测。 SSM在时间间隔添加到材料的时间间隔之后变化应力水平,这可以跟踪BV WCS模型。 SSM数据被校准到模型中,并且WCS模型会产生压力破裂的逼真预测。 MSCR,损坏和蠕变变形。校准的材料常数用于产生压力破裂的预测,并使用国家材料科学研究所(NIMS)数据库进行审计后审计。类似地,将MCSR预测与先前的研究进行比较。最后,将蠕变变形预测与真实数据进行比较,并确定结果在预期边界之间良好。可以以更快的速率和更具成本效益的方法来确定材料表征和机械性能。这对于多种应用是有益的,例如添加剂制造,复合材料,航天器和工业燃气轮机(IGT)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号