首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >INTERPRETATION OF LOW-PRESSURE TURBINE PROFILE LOSS GENERATION MECHANISMS FROM A VIEWPOINT OF BLADE DRAG FORCES
【24h】

INTERPRETATION OF LOW-PRESSURE TURBINE PROFILE LOSS GENERATION MECHANISMS FROM A VIEWPOINT OF BLADE DRAG FORCES

机译:从刀片阻力的角度解释低压涡轮轮廓丢失产生机制

获取原文

摘要

This paper describes the interpretation of a generation mechanism of profile loss of low pressure turbine (LPT) blades from a viewpoint of blade drag forces. On the analogy of profile drag of an isolated body, the profile loss of a cascade blade is subdivided into two components, the loss due to friction drag and the loss due to pressure drag. The friction drag is equal to the integral of all axial component of shearing stresses taken over the surface of the blade. The pressure drag, which does not exist in an inviscid flow, is due to the fact that the presence of the boundary later modifies the pressure distribution on the blade. The losses due to friction drag and pressure drag are evaluated for two kinds of blade profiles using the results of steady incompressible Reynolds Averaged Navier-Stokes (RANS) simulations at three different Reynolds numbers (Re), 57.000. 100.000 and 147,000. It is found that the trend of the total profile loss with Reynolds number is mainly determined by the trend of the loss due to pressure drag with Reynolds number. A rise in the total profile loss of the blade with a laminar separation bubble on the suction surface at low Reynolds number is mainly attributed to the increase in the pressure drag due to thickened suction surface boundary layer by the enlarged separation bubble. The friction drag and the pressure drag are also estimated for the measured data of low speed linear cascade tests with a moving-bar mechanism. In the estimation, the pressure drag is derived from the estimated total profile loss and the estimated friction drag by using boundary layer integral equations. It is found that the trend of total profile loss with incoming wake passing frequency is almost determined by the trend of the loss due to pressure drag with the wake passing frequency.
机译:本文从叶片拖曳力的观点来介绍了从叶片拖曳力的观点来解释低压涡轮机(LPT)叶片的轮廓损耗的产生机制。在孤立体的轮廓拖动的类比上,级联刀片的轮廓损耗被细分为两个部件,由于摩擦阻力而导致的损耗是由于压力阻力。摩擦拖拉等于剪切应力的所有轴向分量的积分等于叶片表面上的剪切应力的整体。压力阻力不存在于托盘流中,是由于边界的存在后来改变刀片上的压力分布。使用稳定的不可压缩雷诺斯的结果在三种不同的雷诺数(RE),57.000,使用稳定的不可压缩雷诺平均结果(RE),57.000,评估由于稳定的不可压缩雷诺(RANS)模拟的结果评估了两种刀片配置造成的损失。 100.000和147,000。结果发现,与雷诺数的总轮廓损失的趋势主要由由于雷诺数的压力拖累而导致的损失趋势。在低雷诺数的吸入表面上具有层状分离气泡的叶片的总轮廓损失的升高主要归因于通过扩大的分离气泡由于增稠的抽吸表面边界层而增加的压力阻力。还估计摩擦阻力和压力阻力对于具有移动条机构的低速线性级联测试的测量数据。在估计中,通过使用边界层积分方程,从估计的总曲线损耗和估计的摩擦拖动导出压力阻力。结果发现,由于唤醒传递频率的压力拖动,具有传入唤醒传入频率的总轮廓损耗的趋势几乎决定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号