首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >HYBRID MODEL-BASED AND DATA-DRIVEN DIAGNOSTIC ALGORITHM FOR GAS TURBINE ENGINES
【24h】

HYBRID MODEL-BASED AND DATA-DRIVEN DIAGNOSTIC ALGORITHM FOR GAS TURBINE ENGINES

机译:基于混合模型的燃气轮机和数据驱动诊断算法

获取原文
获取外文期刊封面目录资料

摘要

Data-driven algorithms require large and comprehensive training samples in order to provide reliable diagnostic solutions. However, in many gas turbine applications, it is hard to find fault data due to proprietary and liability issues. Operational data samples obtained from end-users through collaboration projects do not represent fault conditions sufficiently and are not labeled either. Conversely, model-based methods have some accuracy deficiencies due to measurement uncertainty and model smearing effects when the number of gas path components to be assessed is large. The present paper integrates physics-based and data-driven approaches aiming to overcome this limitation. In the proposed method, an adaptive gas path analysis (AGPA) is used to correct measurement data against the ambient condition variations and normalize. Fault signatures drawn from the AGPA are used to assess the health status of the case engine through a Bayesian network (BN) based fault diagnostic algorithm. The performance of the proposed technique is evaluated based on five different gas path component faults of a three-shaft turbofan engine, namely intermediate-pressure compressor fouling (1PCF), high-pressure compressor fouling (HPCF), high-pressure turbine erosion (HPTE), intermediate-pressure turbine erosion (IPTE), and low-pressure turbine erosion (LPTE). Robustness of the method under measurement uncertainty has also been tested using noise-contaminated data. Moreover, the fault diagnostic effectiveness of the BN algorithm on different number and type of measurements is also examined based on three different sensor groups. The test results verify the effectiveness of the proposed method to diagnose single gas path component faults correctly even under a significant noise level and different instrumentation suites. This enables to accommodate measurement suite inconsistencies between engines of the same type. The proposed method can further be used to support the gas turbine maintenance decision-making process when coupled with overall Engine Health Management (EHM) systems.
机译:数据驱动算法需要大型和全面的训练样本,以提供可靠的诊断解决方案。然而,在许多燃气轮机应用中,由于专有和责任问题,很难找到故障数据。通过协作项目从最终用户获得的操作数据样本不具有充分的故障条件,也没有标记。相反,基于模型的方法具有一些准确性缺陷,因为当要评估的天然气路径部件的数量大时,由于测量不确定性和模型涂抹效果。本文集中于基于物理和数据驱动的方法,旨在克服这种限制。在所提出的方法中,自适应气体路径分析(AGPA)用于校正环境条件变化和标准化的测量数据。从AGPA中汲取的故障签名用于通过基于贝叶斯网络(BN)的故障诊断算法来评估案例引擎的健康状态。基于三轴涡轮机发动机的五种不同的气体路径部件,即中压压缩机污垢(1PCF),高压压缩机污垢(HPCF),高压涡轮机侵蚀(HPTE)基于五种不同的气体路径部件的性能进行评估。 ),中压涡轮侵蚀(IPTE)和低压涡轮侵蚀(LPTE)。使用噪声污染数据测试了测量不确定性下的方法的鲁棒性。此外,还基于三种不同的传感器组检查了不同数量和测量类型的BN算法的故障诊断效果。即使在显着的噪声水平和不同的仪表套件下,测试结果验证了所提出的方法诊断单个气体路径部件故障的有效性。这使得能够在相同类型的引擎之间适应测量套件不一致。当与整体发动机健康管理(EHM)系统相结合时,所提出的方法可以进一步用于支持燃气涡轮机维护决策过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号