首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >Effects of Freest ream Turbulence Intensity, Turbulence Length Scale, and Exit Reynolds Number on Vane Endwall Secondary Flow and Heat Transfer in a Transonic Turbine Cascade
【24h】

Effects of Freest ream Turbulence Intensity, Turbulence Length Scale, and Exit Reynolds Number on Vane Endwall Secondary Flow and Heat Transfer in a Transonic Turbine Cascade

机译:自由型梁湍流强度,湍流长度尺度和出口雷诺数对跨音汽轮机级联的叶片端壁二次流动和热传递的影响

获取原文

摘要

In gas turbine engines, the first-stage vanes usually suffer harsh incoming flow conditions from the combustor with high pressure, high temperature and high turbulence. The combustor-generated high freestream turbulence and strong secondary flows in a gas turbine vane passage have been reported to augment the endwall thermal load significantly. This paper presents a detailed numerical study on the effects of high freestream turbulence intensity, turbulence length scale, and exit Reynolds number on the endwall secondary flow pattern and heat transfer distribution of a transonic linear turbine vane passage at realistic engine Mach numbers, with a flat endwall no cooling. Numerical simulations were conducted at a range of different operation conditions: six freestream turbulence intensities (Tu = 1%, 5%, 10%, 13%, 16% and 20%), six turbulence length scales (normalized by the vane pitch of Λ/P = 0.01, 0.04, 0.07, 0.12, 0.24, 0.36), and three exit isentropic Mach number (Ma_(ex) = 0.6, 0.85 and 1.02 corresponding exit Reynolds number Re_(ex) = 1.1 × 10~6, 1.7× 10~6 and 2.2× 10~6, respectively, based on the vane chord). Detailed comparisons were presented for endwall heat transfer coefficient distribution, endwall secondary flow field at different operation conditions, while paying special attention to the link between endwall thermal load patterns and the secondary flow structures. Results show that the freestream turbulence intensity and length scale have a significant influence on the endwall secondary flow field, but the influence of the exit Reynolds number is very weak. The Nusselt number patterns for the higher turbulence intensities (Tu = 16%, 20%) appear to be less affected by the endwall secondary flows than the lower turbulence cases. The thermal load distribution in the arc region around the vane leading edge and the banded region along the vane pressure side are influenced most strongly by the freestream turbulence intensity. In general, the higher freestream turbulence intensities make the vane endwall thermal load more uniform. The Nusselt number distribution is only weakly affected by the turbulence length scale when Λ/P is larger than 0.04. The heat transfer level appears to have a significant uniform augmentation over the whole endwall region with the increasing Ma_(ex). The endwall thermal load distribution is classified into four typical regions, and the effects of freestream turbulence, exit Reynolds number in each region were discussed in detail.
机译:在燃气轮机发动机中,第一级叶片通常从燃烧器中遭受苛刻的进入流动条件,具有高压,高温和高湍流。已经报道了燃气轮机叶片通道中的燃烧器产生的高自由流湍流和强次级流动显着增加了端壁热负荷。本文介绍了高自发流湍流强度,湍流长度尺度的影响的详细数值研究,并在现实发动机马赫数处的跨音型线性汽轮机叶片通道的端壁二次流动模式和传热分布的恢复雷诺数。端墙没有冷却。数值模拟在不同操作条件范围内进行:六个自由流湍流强度(Tu = 1%,5%,10%,13%,16%和20%),六个湍流长度尺度(由叶片的叶片校准/ p = 0.01,0.04,0.07,0.12,0.24,0.36)和三个出口等熵马赫数(MA_(ex)= 0.6,0.85和1.02相应的出口雷诺数Re_(ex)= 1.1×10〜6,1.7× 10〜6和2.2×10〜6,分别基于叶片弦)。提出了用于端壁传热系数分布的详细比较,在不同操作条件下的端壁次流场,同时特别注意端壁热负荷图案和二次流动结构之间的链路。结果表明,自身沟湍流强度和长度尺度对端壁二次流动场具有显着影响,但出口雷诺数的影响非常弱。对于更高的湍流强度(TU = 16%,20%)的露珠数目模式似乎对端壁二次流量的影响小于下湍流情况。沿着叶片压力侧的叶片前缘和带状区域周围的弧区域中的热负荷分布受到自由流湍流强度最强烈的影响。一般来说,较高的FreeSteam湍流强度使叶片端壁热负荷更加均匀。当λ/ p大于0.04时,露珠数分布仅受湍流长度尺度的弱影响。随着MA_(ex)的增加,传热水平似乎在整个端壁区域上具有显着的均匀增强。将端壁热载荷分布分为四个典型区域,并详细讨论了自由流湍流的影响,每个区域中的出口雷诺数。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号