首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >UNSTEADY SIMULATIONS OF A TRAILING-EDGE SLOT USING MACHINE-LEARNT TURBULENCE STRESS AND HEAT-FLUX CLOSURES
【24h】

UNSTEADY SIMULATIONS OF A TRAILING-EDGE SLOT USING MACHINE-LEARNT TURBULENCE STRESS AND HEAT-FLUX CLOSURES

机译:使用机器学习湍流应力和热通量闭合的后缘槽的不稳定模拟

获取原文

摘要

The trailing edge slot is a canonical representation of the pressure-side bleed flow encountered in high pressure turbines. Predicting the flow and temperature downstream of the slot exit remains challenging for RANS and URANS, with both significantly overpredicting the adiabatic wall-effectiveness. This over-prediction is attributable to the incorrect mixing prediction in cases where the vortex shedding is present. In case of RANS the modelling error is rooted in not properly accounting for the shedding scales while in URANS the closures account for the shedding scales twice, once by resolving the shedding and twice with the model for all the scales. Here, we present an approach which models only the stochastic scales that contribute to turbulence while resolving the scales that do not, i.e. scales considered as contributing to deterministic unsteadiness. The model for the stochastic scales is obtained through a data-driven machine learning algorithm, which produces a bespoke turbulence closure model from a high-fidelity dataset. We use the best closure (blowing ratio of 1.26) for the anisotropy obtained in the a priori study of Lav, Philip & Sandberg [A New Data-Driven Turbulence Model Framework for Unsteady Flows Applied to Wall-Jet and Wall-Wake Flows, 2019] and conduct compressible URANS calculations. In the first stage, the energy equation is solved utilising the standard gradient diffusion hypothesis for the heat-flux closure. In the second stage, we develop a bespoke heat-flux closure using the machine-learning approach for the stochastic heat-flux components only. Subsequently, calculations are performed using the machine-learnt closures for the heat-flux and the anisotropy together. Finally, the generalisability of the developed closures is evaluated by testing them on additional blowing ratios of 0.86 and 1.07. The machine-learnt closures developed specifically for URANS calculations show significantly improved predictions for the adiabatic wall-effectiveness across the different cases.
机译:后缘槽是在高压涡轮机中遇到的压力侧流动的规范表示。预测槽出口下游的流动和温度仍然是对RAN和uran的挑战,两者都显着超估了绝热壁效应。这种过度预测可归因于在存在涡旋脱落的情况下的不正确的混合预测。在Rans的情况下,建模错误植根于未正确考虑脱落量表,而在Urans中,缩小缩小缩放尺寸的缩放账户两次,一次通过解析所有尺度的模型和两次模型。在这里,我们提出了一种模型,该方法仅在解决方案的尺度上仅贡献湍流的随机缩放,即,认为是有助于确定性不稳定的尺度。通过数据驱动的机器学习算法获得随机缩放的模型,其从高保真数据集产生定制湍流闭合模型。我们使用最佳封闭(吹吹比为1.26),以便在Lav,Philip&Sandberg的先验研究中获得的各向异性[一个新的数据驱动湍流模型框架,用于墙壁喷射和壁唤醒流动,2019年]并进行可压缩urans计算。在第一阶段,利用用于热通量封闭的标准梯度扩散假设来解决能量方程。在第二阶段,我们使用仅用于随机热通量部件的机器学习方法开发定制的热通量闭合。随后,使用机器学习的封闭件进行用于热通量和各向异性的计算机进行计算。最后,通过在额外的吹风比为0.86和1.07的额外吹气比来评估所发育闭合的不可行能力。专门为urans计算开发的机器学习封闭表明,在不同情况下,对绝热壁效应的预测显着提高了预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号