首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >NUMERICAL STUDIES OF NOVEL AERO ENGINE SECONDARY COMBUSTORS FOR LOW-NOX EMISSIONS
【24h】

NUMERICAL STUDIES OF NOVEL AERO ENGINE SECONDARY COMBUSTORS FOR LOW-NOX EMISSIONS

机译:新型航空发动机二次燃烧器的数值研究,用于低NOX排放量

获取原文

摘要

Gas turbine thermal efficiency and fuel burn are very dependent on turbine entry temperature and overall pressure ratio (OPR). Unfortunately, increases in these two parameters compromise other key aspects of engine operation and tend to increase emissions of nitrogen oxides (NO_x). The European Horizon 2020 ULTIMATE project researched advanced-cycle aero engines with synergistic combinations of novel technologies to increase thermal efficiency without increasing emissions. One candidate technology was the addition of secondary combustion to increase the mean temperature of heat addition to improve thermal efficiency while limiting the primary combustor flame temperatures and NO_x formation. However, an overall reduction in NO_x also requires the secondary combustor to be a low-NO_x design. This paper describes numerical studies carried out on novel aero engine secondary combustor concepts developed in two MSc-thesis research projects. The studies have explored the potential of oxy-poor-flame combustion concepts. These annular combustor designs featured two distinct regions: (ⅰ) the vortex zone, which promotes recirculation of combustion products, a prerequisite for low-oxygen combustion, and (ⅱ) a through-flow region where part of the incoming flow bypasses the vortex before the flows mix again. These studies have demonstrated the advantages and some limitations of the proposed designs and emissions assessments in comparison with previous secondary combustor studies. They suggest very low NO_x is achievable with oxy-poor combustion, but will be more difficult if the incoming oxygen levels are above 10%. More-accurate assessments will require LES modelling and inclusion of the primary combustor in the simulations. However, if the low overall NO_x emissions would include relatively higher levels of nitrous oxide (N_2O) then this might raise concerns with respect to global warming.
机译:燃气轮机热效率和燃料燃烧非常依赖于涡轮机进入温度和总压力比(OPR)。不幸的是,这两个参数的增加会损害发动机操作的其他关键方面,并且倾向于增加氮氧化物的排放(NO_X)。欧洲地平线2020终极项目研究了具有协同组合的新型技术的高级组合,以增加热效率而不会增加排放。一种候选技术是添加二次燃烧,以增加散热的平均温度,以提高热效率,同时限制初级燃烧器火焰温度和NO_x形成。但是,NO_X的总体减少还需要辅助燃烧器是低NO_X的设计。本文介绍了在两个MSC论文研究项目中开发的新型航空发动机二级燃烧器概念进行了数值研究。这些研究探索了氧气燃烧燃烧概念的潜力。这些环形燃烧器设计有两个不同的区域:(Ⅰ)涡旋区域,促进燃烧产物的再循环,低氧气燃烧的先决条件,(Ⅱ)在进入流动的一部分进入流动之前的流动区域绕过涡流流量再次混合。这些研究表明,与先前的二级燃烧器研究相比,所提出的设计和排放评估的优点和一些局限性。他们建议非常低的NO_X可以通过氧气燃烧可实现,但如果进入的氧水平高于10%,则会更加困难。更准确的评估需要LES建模和初级燃烧器在模拟中。然而,如果低整体NO_X排放将包括相对较高水平的氧化亚氮(N_2O),那么这可能会对全球变暖提出担忧。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号