首页> 外文会议>ASME International Conference on Ocean, Offshore and Arctic Engineering >A NOVEL DEEP LEARNING METHOD FOR THE PREDICTIONS OF CURRENT FORCES ON BLUFF BODIES
【24h】

A NOVEL DEEP LEARNING METHOD FOR THE PREDICTIONS OF CURRENT FORCES ON BLUFF BODIES

机译:一种新的深层学习方法,用于预测凹槽体上的电流力量

获取原文

摘要

Unsteady separated flow behind a bluff body causes fluctuating drag and transverse forces on the body, which is of great significance in many offshore and marine engineering applications. While physical experimental and computational techniques provide valuable physics insight, they are generally time-consuming and expensive for design space exploration and flow control of such practical scenarios. We present an efficient Convolutional Neural Network (CNN) based deep-learning technique to predict the unsteady fluid forces for different bluff body shapes. The discrete convolution process with a non-linear rectification is employed to approximate the mapping between the bluff-body shape and the fluid forces. The deep neural network is fed by the Euclidean distance function as the input and the target data generated by the full-order Navier-Stokes computations for primitive bluff body shapes. The convolutional networks are iteratively trained using a stochastic gradient descent method to predict the fluid force coefficients of different geometries and the results are compared with the full-order computations. We have extended this CNN-based technique to predict the variation of force coefficients with the Reynolds number as well. Within the error threshold, the predictions based on our deep convolutional network have a speed-up nearly three orders of magnitude compared to the full-order results and consumes an insignificant fraction of computational resources. The deep CNN-based model can predict the hydrodynamic coefficients required for the well-known Lighthill's force decomposition in almost real time which is extremely advantageous for offshore applications. Overall, the proposed CNN-based approximation procedure has a profound impact on the parametric design of bluff bodies and the feedback control of separated flows.
机译:虚张声体背后的不稳定分离流导致体内波动和横向力波动,这在许多海上和海洋工程应用中具有重要意义。虽然物理实验和计算技术提供了有价值的物理洞察力,但它们通常是耗时和昂贵的设计空间探索和这种实际情况的流量控制。我们提出了一种基于高效的卷积神经网络(CNN)的深度学习技术,以预测不同诈唬体形状的不稳定流体力。采用具有非线性整流的离散卷积过程来近似凹槽体形状和流体力之间的映射。深度神经网络由欧几里德距离功能作为输入和由全阶Navier-Stokes计算产生的目标数据,用于原始诈唬身体形状。卷积网络使用随机梯度下降方法迭代训练,以预测不同几何形状的流体力系数,并且将结果与全阶计算进行比较。我们已经扩展了基于CNN的技术,以预测具有雷诺数的力系数的变化。在错误阈值中,根据我们深度卷积网络的预测,与全阶结果相比,基于我们的深度卷积网络的预测具有近三个数量级,并消耗了计算资源的微不足道的分数。基于CNN的深度基于CNN的模型可以预测众所周知的灯灰体的力分解所需的流体动力系数几乎实时,这对于近海应用来说是非常有利的。总的来说,所提出的基于CNN的近似手术对诈唬物体的参数设计和分离流的反馈控制具有深远的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号