首页> 外文会议>ASME International Conference on Ocean, Offshore and Arctic Engineering >DEVELOPMENT OF A SIMULATION TOOL COUPLING HYDRODYNAMICS AND UNSTEADY AERODYNAMICS TO STUDY FLOATING WIND TURBINES
【24h】

DEVELOPMENT OF A SIMULATION TOOL COUPLING HYDRODYNAMICS AND UNSTEADY AERODYNAMICS TO STUDY FLOATING WIND TURBINES

机译:开发仿真工具耦合流体动力学和非定常空气动力学研究浮动风力涡轮机

获取原文

摘要

Depending on the environmental conditions, floating Horizontal Axis Wind Turbines (FHAWTs) may have a very unsteady behaviour. The wind inflow is unsteady and fluctuating in space and time. The floating platform has six Degrees of Freedom (DoFs) of movement. The aerodynamics of the rotor is subjected to many unsteady phenomena: dynamic inflow, stall, tower shadow and rotor/wake interactions. State-of-the-art aerodynamic models used for the design of wind turbines may not be accurate enough to model such systems at sea. For HAWTs, methods such as Blade Element Momentum (BEM) [1] have been widely used and validated for bottom fixed turbines. However, the motions of a floating system induce unsteady phenomena and interactions with its wake that are not accounted for in BEM codes [2]. Several research projects such as the OC3 [3], OC4 [4] and OC5 [5] projects focus on the simulation of FHAWTs. To study the seakeeping of Floating Offshore Wind Turbines (FOWTs), it has been chosen to couple an unsteady free vortex wake aerodynamic solver (CACTUS) to a seakeeping code (InWave [6]). The free vortex wake theory assumes a potential flow but inherently models rotor/wake interactions and skewed rotor configurations. It shows a good compromise between accuracy and computational time. A first code-to-code validation has been done with results from FAST [7]on the FHAWT OC3 test case [3] considering the NREL 5MW wind turbine on the OC3Hywind SPAR platform. The code-to-code validation includes hydrodynamics, moorings and control (in torque and blade pitch). It shows good agreement between the two codes for small amplitude motions, discrepancies arise for rougher sea conditions due to differences in the used aerodynamic models.
机译:根据环境条件,浮动水平轴风力涡轮机(FHAWTS)可能具有非常不稳定的行为。风流量不稳定,在空间和时间波动。浮动平台具有六个自由度(DOF)的运动。转子的空气动力学受到许多不稳定的现象:动态流入,摊位,塔阴影和转子/唤醒相互作用。用于设计风力涡轮机设计的最先进的空气动力学模型可能不足以在海上模拟这种系统。对于HAWTS,诸如刀片元件动量(BEM)[1]的方法已被广泛使用和验证用于底部固定涡轮机。然而,浮动系统的动作诱导不稳定的现象和与其唤醒的互动,这些概率在BEM代码中未占据[2]。几个研究项目,如OC3 [3],OC4 [4]和OC5 [5]项目专注于对FHAWTS的仿真。为研究浮动近海风力涡轮机(家禽)的海守,已选择将不稳定的自由涡旋唤醒空气动力学求解器(仙人掌)耦合到海守代码(INWave [6])。自由涡旋唤醒理论假设潜在的流量,但固有地模型转子/唤醒相互作用和偏斜转子配置。它显示了精度和计算时间之间的良好折衷。在COREL 5MW风力涡轮机上,使用FATH [7]在OC3HYWIND SPAR平台上的NREL 5MW风力涡轮机上的FAST [7]的结果完成了第一种代码代码验证。代码为代码验证包括流体动力学,系泊和控制(在扭矩和刀片间距)。它在两种代码之间显示出良好的一致性,因为使用的空气动力学模型的差异,粗糙的海洋状况出现差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号