首页> 外文会议>ASME international conference on ocean, offshore and arctic engineering >DEVELOPMENT OF A SIMULATION TOOL COUPLING HYDRODYNAMICS AND UNSTEADY AERODYNAMICS TO STUDY FLOATING WIND TURBINES
【24h】

DEVELOPMENT OF A SIMULATION TOOL COUPLING HYDRODYNAMICS AND UNSTEADY AERODYNAMICS TO STUDY FLOATING WIND TURBINES

机译:模拟工具耦合流体动力学和非定常气动研究浮动风轮机的开发

获取原文

摘要

Depending on the environmental conditions, floating Horizontal Axis Wind Turbines (FHAWTs) may have a very unsteady behaviour. The wind inflow is unsteady and fluctuating in space and time. The floating platform has six Degrees of Freedom (DoFs) of movement. The aerodynamics of the rotor is subjected to many unsteady phenomena: dynamic inflow, stall, tower shadow and rotor/wake interactions. State-of-the-art aerodynamic models used for the design of wind turbines may not be accurate enough to model such systems at sea. For HAWTs, methods such as Blade Element Momentum (BEM) [1] have been widely used and validated for bottom fixed turbines. However, the motions of a floating system induce unsteady phenomena and interactions with its wake that are not accounted for in BEM codes [2]. Several research projects such as the OC3 [3], OC4 [4] and OC5 [5] projects focus on the simulation of FHAWTs. To study the seakeeping of Floating Offshore Wind Turbines (FOWTs), it has been chosen to couple an unsteady free vortex wake aerodynamic solver (CACTUS) to a seakeeping code (InWave [6]). The free vortex wake theory assumes a potential flow but inherently models rotor/wake interactions and skewed rotor configurations. It shows a good compromise between accuracy and computational time. A first code-to-code validation has been done with results from FAST [7]on the FHAWT OC3 test case [3] considering the NREL 5MW wind turbine on the OC3Hywind SPAR platform. The code-to-code validation includes hydrodynamics, moorings and control (in torque and blade pitch). It shows good agreement between the two codes for small amplitude motions, discrepancies arise for rougher sea conditions due to differences in the used aerodynamic models.
机译:取决于环境条件,浮动水平轴风力发电机(FHAWT)可能会有非常不稳定的行为。风的流入是不稳定的,并且在时空上波动。浮动平台具有六个运动自由度(DoF)。转子的空气动力学受到许多不稳定的现象的影响:动态流入,失速,塔影和转子/尾流相互作用。用于风力涡轮机设计的最新空气动力学模型可能不够准确,无法在海上对此类系统进行建模。对于HAWT,诸如叶片单元动量(BEM)[1]之类的方法已被广泛使用,并已针对底部固定式涡轮机进行了验证。但是,浮动系统的运动会引起不稳定的现象以及与其唤醒有关的相互作用,这在BEM代码中并未解决[2]。 OC3 [3],OC4 [4]和OC5 [5]等几个研究项目专注于FHAWT的仿真。为了研究海上浮动风力涡轮机(FOWT)的海上维护,已选择将不稳定的自由涡旋空气动力学求解器(CACTUS)耦合到海上维护代码(InWave [6])。自由涡旋流理论假设有潜在的流动,但固有地对转子/尾流相互作用和偏斜的转子构型进行建模。它显示了准确性和计算时间之间的良好折衷。考虑到OC3Hywind SPAR平台上的NREL 5MW风力发电机,FHAWT OC3测试用例[3]上的FAST [7]结果完成了首次代码间验证。代码到代码的验证包括流体力学,系泊和控制(在扭矩和桨距方面)。它显示了小幅度运动的两个代码之间的良好一致性,由于所使用的空气动力学模型的差异,在更恶劣的海况下会出现差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号