首页> 外文会议>International Conference on Computer Vision >Robust Motion Estimation Using Trajectory Spectrum Learning: Application to Aortic and Mitral Valve Modeling from 4D TEE
【24h】

Robust Motion Estimation Using Trajectory Spectrum Learning: Application to Aortic and Mitral Valve Modeling from 4D TEE

机译:使用轨迹频谱学习的强大运动估计:从4D T段应用到主动脉和二尖瓣造型

获取原文

摘要

In this paper we propose a robust and efficient approach to localizing and estimating the motion of non-rigid and articulated objects using marginal trajectory spectrum learning. Detecting the motion directly in the Euclidean space is often found difficult to guarantee a smooth and accurate result and might be affected by drifting. These issues, however, can be addressed effectively by formulating the motion estimation problem as spectrum detection in the trajectory space. The full trajectory space can be decomposed into orthogonal sub spaces defined by generic bases, such as the Discrete Fourier Transform (DFT). The obtained representation is shown to be compact, facilitating efficient learning and optimization in its marginal spaces. In the training stage, local features are extended in the temporal domain to integrate the time coherence constraint and selected via boosting to form strong classifiers. An incremental optimization is performed in sparse marginal spaces learned from the training data. To maximize efficiency and robustness we constrain the search based on clusters of hypotheses defined in each subspace. Experiments demonstrate the performance of the proposed method on articulated motion estimation of aortic and mitral valves from ultrasound data. Our method is evaluated on 65 4D TEE sequences (1516 volumes) with the accuracy in the range of the inter-user variability of expert users. It provides in less than 60 seconds with an precision of 1.36 ± 0.32mm a personalized 4D model of aortic and mitral valves crucial for the clinical workflow.
机译:在本文中,我们提出了一种利用边缘轨迹谱学习的本地化和估计非刚性和铰接物体的运动的稳健和有效的方法。通常发现在欧几里德空间中直接检测运动难以保证平滑和准确的结果,并且可能受到漂移的影响。然而,通过在轨迹空间中将运动估计问题作为光谱检测,可以有效地解决这些问题。完整的轨迹空间可以分解成由通用基础定义的正交子空间,例如离散傅里叶变换(DFT)。所获得的表示显示为紧凑,促进其边际空间中有效的学习和优化。在训练阶段,在时间域中扩展了本地特征,以集成时间一致性约束,并通过升压选择以形成强分类器。在从训练数据中了解的稀疏边缘空间中执行增量优化。为了最大限度地提高效率和稳健性,我们基于每个子空间中定义的假设群集来限制搜索。实验证明了所提出的方法对来自超声数据的主动脉和二尖瓣的铰接运动估计的性能。我们的方法在65 4D T序列(1516卷)上评估了专家用户的间间可变性范围的准确性。它在不到60秒内提供的精度为1.36±0.32mm的主动脉和二尖瓣的个性化4D模型对于临床工作流程至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号