首页> 外文会议>IEEE Biomedical Circuits and Systems Conference >Activity dependent structural plasticity in neuromorphic systems
【24h】

Activity dependent structural plasticity in neuromorphic systems

机译:神经系统中的活性依赖性结构可塑性

获取原文

摘要

Research in neuroscience suggests that networks of biological neurons undergo a constant reconfiguration of their topology via activity-dependent plasticity mechanisms. The observed growing and retracting of dendritic spines can be hypothesized to be a resource-optimizing strategy that limits the amount of energy spent on maintaining a large number synapses that are not contributing to the networks performance. Neuromorphic analog VLSI emulates biophysical processes of neural tissue using CMOS transistors operated in the sub-threshold regime, to achieve high energy efficiency. One of the constraints that limits the scalability of neuromorphic information processing architectures is the number of available synapse-emulating circuits, which is naturally limited by the integrated circuits (ICs) layout dimensions. Here we explore the possibility to exploit structural plasticity as a biologically-inspired strategy for optimizing resource usage in neuromorphic processors. We propose a mechanism that allocates the limited number of synapses during runtime, in order to choose event-sources that best contribute to the postsynaptic neurons activity. In this context, we show that neuronal activity can serve as an indicator of what synapse to connect to which source, mimicking activity dependent dynamics of dendritic spines and making optimal allocation of the resources available on the neuromorphic hardware.
机译:神经科学的研究表明,生物神经元网络通过活动依赖性塑性机制经常重新配置它们的拓扑。观察到的树枝状刺的生长和缩回可以被假设为资源优化策略,这些策略限制了在维护没有贡献网络性能的大量突触上所花费的能量。神经形态的模拟VLSI使用在子阈值方案中操作的CMOS晶体管呈现神经组织的生物物理过程,以实现高能量效率。限制神经形式信息处理架构的可扩展性的约束之一是可用突触模拟电路的数量,其自然受限电路(IC)布局尺寸。在这里,我们探讨了利用结构可塑性作为一种用于优化神经形态处理器的资源使用的生物启发策略的可能性。我们提出了一种机制,可以在运行时分配有限数量的突触,以便选择最适合突触后神经元活动的事件来源。在这种情况下,我们表明神经元活动可以作为连接到哪个源的突触的指标,模拟树突刺的源性依赖性动态,并在神经形状硬件上最佳地分配资源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号