首页> 外文会议>Annual International Pittsburgh Coal Conference >Experimental Study and Modeling for In-Duct Mercury Capture by Sorbent Injection
【24h】

Experimental Study and Modeling for In-Duct Mercury Capture by Sorbent Injection

机译:吸附剂注射液捕获试验研究及造型

获取原文

摘要

In order to evaluate mercury capture performance of raw and bromine treated activated carbon, and investigate the influences of particle size, temperature, inlet mercury concentration, residence time, and sorbent feed rate on in-duct mercury capture efficiency, experimental studies on mercury capture by sorbent injection were carried out in an entrained flow reactor. The results show that in-duct mercury capture efficiency of bromine treated activated carbon is higher at 120 "C compared to raw activated carbon. This is owing to the increase of active site (Br) on activated carbon surface that improves chemisorption at higher temperature. Reducing sorbent particle size or increasing inlet mercury concentration can both speed up film mass transfer rate of mercury from gas to surface of the sorbent and rise intraparticle diffusion rate of mercury from surface to internal pores, which then improves mercury capture efficient. Longer residence time is beneficial to the mercury deposition on the inner pores. Due to sorbent residence time is far less than the adsorption equilibrium time, so mass transfer during mercury adsorption progress is recognized as adsorption rate controlling step. Higher temperature reduces physisorption ability leading to mercury removal capacity lowered. Increase of sorbent feed rate results in higher mercury capture, but reduces the mercury accumulative adsorption capacity per unit quality of sorbent. A comprehensive mathematical model, based on mass balance equation, mass transfer model and surface isothermal adsorption model, was established for predicting mercury capture efficient by sorbent injection. Sensitivity analysis of the model parameters was also conducted. The simulation results indicate that the model is capable of forecasting the mercury capture efficient and a good agreement between the modeled curves and the experimental data is obtained. So the mathematical model can be used to provide assistance in analyzing mechanisms for process of sorbent injection. The sensitivity analysis points out that sorbent feeding rate, particle size, adsorption constant K and sorbent residence time exert dominant impacts on mercury capture.
机译:为了在风道汞捕获效率,通过在汞捕获实验研究评估原料和溴处理过的活性碳的汞捕获性能,并调查颗粒大小,温度,入口汞浓度,停留时间,和吸附剂的进料速率的影响吸附剂注入是在夹带流反应器中进行。结果表明溴处理的活性炭,在风道的汞捕获效率是在120“C更高相比原料活性炭。这是由于活性位点的在活性炭上的表面,在较高的温度提高了化学吸附的增加(BR)。减少吸附剂的颗粒尺寸或增加进口汞浓度既可以加快从气体汞膜的传质速率汞的吸附剂与提高颗粒内扩散速率从表面到内部的孔,然后提高汞捕获效率的表面。较长的停留时间是到在所述内孔中的汞沉积是有利的。由于吸附剂停留时间比吸附平衡时间少得多,所以在汞吸附进展质量传递被识别为吸附速率控制步骤。较高的温度降低了物理吸附能力导致降低的汞移除能力在较高的汞吸收增加的吸附剂进给速度的结果,但会降低每吸附剂的单位质量水银累积吸附能力。综合数学模型,基于质量平衡方程,传质模型和表面吸附等温模型,建立了预测汞捕获通过吸附剂注入效率。还进行了模型参数的敏感性分析。仿真结果表明,该模型能够预测的汞捕获效率和所建模的曲线和被获得的实验数据之间的良好的一致性的。因此,数学模型可用于在分析机制吸附剂注入的过程中提供协助。敏感性分析指出吸附剂加料速率,粒度,吸附常数K和汞捕获吸附剂停留时间使出主导影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号