首页> 外文会议>Annual International Pittsburgh Coal Conference >Impact of Surface Heterogeneity on Mercury Uptake by Carbonaceous Sorbents: Bridging the Pressure Gap from UHV to Atmospheric Conditions
【24h】

Impact of Surface Heterogeneity on Mercury Uptake by Carbonaceous Sorbents: Bridging the Pressure Gap from UHV to Atmospheric Conditions

机译:表面异质性对碳质吸附剂的汞吸收的影响:弥合来自UHV的压力差距到大气条件

获取原文

摘要

Chemical and morphological heterogeneities of carbon-based adsorbents play important roles in gas-phase adsorption. However, specific chemical complexes and topological structures of these adsorbents that favor or impede elemental mercury uptake are not well understood and are the subject of this study. Temperature programmed desorption (TPD) with a model carbonaceous material (highly oriented pyrolytic graphite, HOPG) under ultra-high vacuum (UHV) conditions and fixed bed adsorption by activated carbon (BPL) at atmospheric pressure were combined to investigate the effects of chemical and morphological heterogeneities on mercury adsorption by carbonaceous surfaces. TPD results show that mercury adsorption at 100 K onto HOPG surfaces with and without chemical functional groups and topological heterogeneity created by plasma oxidation occurs through physisorption. The removal of chemical functionalities from the HOPG surface enhances mercury physisorption. Plasma oxidation of HOPG provides additional surface area for mercury adsorption. However, the pits created by plasma oxidation are more than 100 nm in diameter and do not simulate microporosity that predominates in activated carbons. Mercury adsorption by activated carbon at atmospheric pressure occurs through two distinct mechanisms. Physisorption governs mercury adsorption at temperatures below 348 K while chemisorption predominates at adsorption temperature above 348 K. Presence of water on activated carbon surface enhances mercury uptake by both physisorption and chemisorption. Oxygen containing functional groups reduce mercury uptake by physisorption by blocking access to the micropores, while no significant impact of on chemisorption was observed in this study. The key findings of this study open the possibility to apply scientific information obtained from the studies with simple surfaces like HOPG under ideal conditions (UHV) to industrial sorbents under realistic process conditions.
机译:碳基吸附剂的化学和形态异质性在气相吸附中起重要作用。然而,这些吸附剂的特定化学络合物和拓扑结构有利于或阻碍元素汞摄取的尚未得到很好的理解,并且是本研究的主题。将温度编程的解吸(TPD)用模型碳质材料(高度取向的热解石墨,Hopg)在超高真空(UHV)条件下,并在大气压下通过活性炭(BPL)在常压碳(BPL)下进行耐压床,以研究化学物质和含量碳质表面对汞吸附的形态异质性。 TPD结果表明,通过物质吸收和通过等离子体氧化产生的血液官能团100k的汞吸附到跳跃表面和血浆氧化产生的拓扑异质性。从跳跃表面取出化学官能团增强了汞的物理吸附。血液的血浆氧化为汞吸附提供了额外的表面积。然而,等离子体氧化产生的凹坑的直径大于100nm,并且不会模拟在活性碳中占主导地位的微孔率。通过两个不同的机制发生在大气压下的活性炭的汞吸附。物理吸附于低于348 k的温度下的汞吸附,同时在吸附温度高于348K的吸附温度下占据化学素。在活性炭表面上的水存在增强了物理吸附和化学吸收的汞吸收。含氧官能团通过阻止对微孔的物理吸收而通过理由减少汞摄取,同时在本研究中观察到对化学吸附没有显着影响。本研究的主要发现开辟了在实际过程条件下的理想条件下(UHV)如Hopg,如Hopg等简单表面上获得的科学信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号