首页> 外文会议>SPIE Photonics Europe Conference >Optimizing phase object reconstruction using an in-line digital holographic microscope and a reconstruction based on a Lorenz-Mie model
【24h】

Optimizing phase object reconstruction using an in-line digital holographic microscope and a reconstruction based on a Lorenz-Mie model

机译:基于Lorenz-Mie模型的基于Lorenz-Mie模型的综合数字全息显微镜优化相位对象重建

获取原文

摘要

Among the various configurations that may be used in digital holography, the original in-line "Gabor" configuration is the simplest setup, with a single beam. It requires sparsity of the sample but it is free from beam separation device and associated drawbacks. This option is particularly suited when cost, compact design or stability arc important. This configuration is also easier to adapt on a traditional microscope. Finally, from the metrological point of view, this configuration, combined with parametric inverse reconstructions using Lorenz-Mie Theory, has proven to make possible highly accurate estimation of spherical particles parameters (3D location, radius and refractive index) with sub-micron accuracy. Experimental parameters such as the defocus distance, the choice of the objective, or the coherence of the source have a strong influence on the accuracy of the estimation. They are often studied experimentally on specific setups. We previously demonstrated the benefit of using statistical signal processing tools as the Cramer-Rao Lower Bounds to predict best theoretical accuracy reachable for opaque object. This accuracy depends on the image/hologram formation model, the noise model and the signal to noise ratio in the holograms. In a co-design framework, we propose here to investigate the influence of experimental parameters on the estimation of the radius and refractive index of micrometer-sized transparent spherical objects. In this context, we use Lorenz-Mie Theory to simulate spherical object holograms, to compute Cramer-Rao Lower bounds, and to numerically reconstruct the objects parameters using an inverse problem approach. Then, these theoretical studies are used to challenge our digital holographic microscopy setup and conclude about accuracy, limitations and possible enhancements.
机译:在可以用于数字全息术的各种配置中,原始的在线“Gabor”配置是最简单的设置,具有单个光束。它需要样品的稀疏性,但它没有光束分离装置和相关缺点。此选项特别适用于成本,紧凑的设计或稳定性弧形。这种配置也更容易适应传统显微镜。最后,从计量的角度来看,这种配置与使用Lorenz-Mie理论的参数反重建结合,已经证明可以高度精确地估计具有子微米精度的球面粒子参数(3D位置,半径和折射率)。诸如散焦距离的实验参数,选择目标的选择,或源的相干性对估计的准确性有很大的影响。它们通常会在特定设置上实验研究。我们之前展示了使用统计信号处理工具作为Cramer-Rao下界的益处,以预测可透明物体可达的最佳理论精度。这种精度取决于图像/全息图形成模型,噪声模型和全息图中的信噪比。在共同设计框架中,我们提出了研究实验参数对微米尺寸透明球面物体半径和折射率估计的影响。在这种情况下,我们使用Lorenz-Mie理论来模拟球形对象全息图,以计算Cramer-Rao下限,并使用逆问题方法数值方式重建对象参数。然后,这些理论研究用于挑战我们的数字全息显微镜设置并结束关于准确性,限制和可能的增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号