首页> 外文会议>SPIE Photonics Europe Conference >Optimizing phase object reconstruction using an in-line digital holographic microscope and a reconstruction based on a Lorenz-Mie model
【24h】

Optimizing phase object reconstruction using an in-line digital holographic microscope and a reconstruction based on a Lorenz-Mie model

机译:使用在线数字全息显微镜优化相位对象重建以及基于Lorenz-Mie模型的重建

获取原文

摘要

Among the various configurations that may be used in digital holography, the original in-line "Gabor" configuration is the simplest setup, with a single beam. It requires sparsity of the sample but it is free from beam separation device and associated drawbacks. This option is particularly suited when cost, compact design or stability arc important. This configuration is also easier to adapt on a traditional microscope. Finally, from the metrological point of view, this configuration, combined with parametric inverse reconstructions using Lorenz-Mie Theory, has proven to make possible highly accurate estimation of spherical particles parameters (3D location, radius and refractive index) with sub-micron accuracy. Experimental parameters such as the defocus distance, the choice of the objective, or the coherence of the source have a strong influence on the accuracy of the estimation. They are often studied experimentally on specific setups. We previously demonstrated the benefit of using statistical signal processing tools as the Cramer-Rao Lower Bounds to predict best theoretical accuracy reachable for opaque object. This accuracy depends on the image/hologram formation model, the noise model and the signal to noise ratio in the holograms. In a co-design framework, we propose here to investigate the influence of experimental parameters on the estimation of the radius and refractive index of micrometer-sized transparent spherical objects. In this context, we use Lorenz-Mie Theory to simulate spherical object holograms, to compute Cramer-Rao Lower bounds, and to numerically reconstruct the objects parameters using an inverse problem approach. Then, these theoretical studies are used to challenge our digital holographic microscopy setup and conclude about accuracy, limitations and possible enhancements.
机译:在可用于数字全息术的各种配置中,原始的在线“ Gabor”配置是具有单个光束的最简单设置。它要求样品稀疏,但是没有光束分离装置和相关的缺点。当成本,紧凑型设计或稳定性很重要时,此选项特别适用。这种配置也更易于在传统显微镜上适应。最后,从计量学的角度来看,该配置与结合使用Lorenz-Mie理论的参数逆重构相结合,已被证明可以实现亚微米精度的球形颗粒参数(3D位置,半径和折射率)的高精度估算。实验参数(如散焦距离,物镜的选择或光源的相干性)对估计的准确性有很大的影响。他们经常在特定的设置上进行实验研究。先前,我们证明了使用统计信号处理工具作为Cramer-Rao下界来预测不透明物体可达到的最佳理论精度的好处。该精度取决于图像/全息图形成模型,噪声模型以及全息图中的信噪比。在一个共同设计的框架中,我们建议在这里研究实验参数对微米级透明球形物体的半径和折射率估计的影响。在这种情况下,我们使用Lorenz-Mie理论模拟球形物体全息图,计算Cramer-Rao下界,并使用反问题方法数值重建物体参数。然后,这些理论研究被用来挑战我们的数字全息显微镜设置,并就准确性,局限性和可能的​​增强做出结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号