首页> 外文会议>Conference on Physics and Simulation of Optoelectronic Devices >Localized Surface Plasmon Resonance Breaking the Photodetection Limit of Si-Based Schottky Photodetector
【24h】

Localized Surface Plasmon Resonance Breaking the Photodetection Limit of Si-Based Schottky Photodetector

机译:局部表面等离子体共振断开Si的肖特基光电探测器的光电检测极限

获取原文
获取外文期刊封面目录资料

摘要

Nowadays, compound semiconductors are the main approach to detect mid-infrared (IR) light, such as HgCdTe and InAsSb, due to the bandgap tunability compared with Si. However, the epitaxy processes are expensive and energy-intensive. Also, compound devices are not compatible with Si-based IC manufacturing. To solve those problems, here, we apply inverted pyramid array structures (1PAS) to induce localized surface plasmon resonance (LSPR) for Si-based Schottky devices. While IR illuminates metal covered IPAS (metal-IPAS), the photo-electrons can accumulate photon energy repeatedly through IPAS induced LSPR. While the electron energy is large enough to overcome the Schottky barrier, so the photo-current is generated. Regarding device preparation and measurement, briefly, the IPAS were formed on n-type Si (n-Si) substrates through photolithography, dry etching, and wet etching. Afterward, 10-nm-thick Ag films and 100-nm-thick Ag grid anode were thermally deposited on the IPAS successively to form Schottky junctions. Finally, Al was thermally deposited on the back of n-Si wafers to be the cathode. After device fabrication, the devices were illuminated by a 4010 nm mid-IR pulse laser, generated from a 1064 nm pulse laser through an optical parametric generator. The photo-voltage of the device induced by the mid-IR was measured by an oscilloscope. Consequently, the oscilloscope showed a short pulse while the device was illuminated by the 4010 nm pulse laser. The rising time is 8 ns, and the amplitude is 10.2 mV. The result reveals that the metal-IPAS induced LSPR successfully detects mid-IR light with photon energy less than Schottky barrier height.
机译:如今,复合半导体是检测中红外(IR)光,例如HGCDTE和INASSB的主要方法,因为与SI相比带隙调性可调性。然而,外延过程昂贵且能量密集。此外,复合装置与基于SI的IC制造不兼容。为了解决这些问题,在这里,我们应用倒金字塔阵列结构(1PAS)以诱导基于SI的肖特基设备的局部表面等离子体共振(LSPR)。虽然IR照亮金属覆盖的IPA(金属IPA),但光子电子可以通过IPA诱导的LSPR反复累积光子能量。虽然电子能量足够大以克服肖特基势垒,因此产生光电流。关于设备制备和测量,简要地,通过光刻,干蚀刻和湿法蚀刻在n型Si(N-Si)基板上形成IPA。之后,连续地在IPA上热沉积10nm厚的Ag膜和100nm厚的Ag栅极阳极以形成肖特基结。最后,Al被热沉积在N-Si晶片背面,以成为阴极。在设备制造之后,通过通过光学参数发生器从1064nm脉冲激光器产生的4010nm中红外脉冲激光器照射。由MID-IR引起的器件的光电压通过示波器测量。因此,示波器显示出短脉冲,而通过4010nm脉冲激光器照射器件。上升时间为8 ns,幅度为10.2 mV。结果表明,金属IPA诱导的LSPR成功地检测中红外光,光子能量小于肖特基势垒高度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号