首页> 外文会议>IEEE International Conference on Plasma Science >Experimental and numerical study of electromagnetic wave trapping in a time-varying periodic plasma
【24h】

Experimental and numerical study of electromagnetic wave trapping in a time-varying periodic plasma

机译:时变周期等离子体中电磁波捕获的实验性和数值研究

获取原文

摘要

Summary form only given. It is well known that as an electromagnetic wave propagates through a rapidly growing plasma it will have its frequency spectrum up-shifted. If the plasma additionally has a periodic spatial configuration, the incident wave can excite many Floquet modes of the structure. Many of these modes often elude experimental detection as the multiple scattering processes required to excite higher order modes does not provide for efficient wave-plasma interaction. A way to achieve more efficient interaction is to use a periodic plasma several free space wavelengths long to trap the incident electromagnetic wave. Considering such a structure, as the plasma density grows from zero, the incident wave initially sees a small plasma-free space discontinuity. This provides for a large transmission (and small reflection) coefficient into (from) the structure. In the time it takes the wave propagates to the far end of the structure the plasma continues to grow. At the boundary between the final plasma layer and free space, the plasma density has increased and the reflection coefficient at this boundary is greater than the one encountered at the beginning of the structure. Thus some of the wave energy is trapped within the structure, where it can effectively interact with the plasma, and alter its spectral content. The trapping process is expected to be more effective for the down-shifted Floquet modes. An experiment exhibiting this phenomena confirms that the amplitude of frequency altered pulses is vastly enhanced over the case of a single plasma slab. Experimental results, along with related numerical simulations, showing the large down-shifted lines are presented.
机译:摘要表格仅给出。众所周知,随着电磁波通过快速生长的等离子体传播,它将具有其频谱上移位。如果等离子体另外具有周期性的空间配置,则入射波可以激发结构的许多浮子模式。这些模式中的许多经常避开实验检测,因为激发更高阶模式所需的多个散射工艺不提供有效的波等离子体相互作用。实现更有效的相互作用的方法是使用周期性等离子体几个自由空间波长长,以捕获入射电磁波。考虑到这样的结构,随着等离子体密度从零增长,入射波最初看到了不连续的小等离子体空间。这提供了大的传输(和小反射)系数进入(从)结构。在它需要波传播到结构的远端时,等离子体继续生长。在最终等离子体层和自由空间之间的边界处,等离子体密度增加,并且该边界处的反射系数大于结构开始时遇到的反射系数。因此,一些波能量被捕获在结构内,在那里它可以有效地与等离子体相互作用,并改变其光谱内容。预计捕获过程将更有效地对偏移的浮子模式更有效。表现出这种现象的实验证实,在单个等离子体板的情况下,频率改变脉冲的幅度大大提高。实验结果以及相关数值模拟,显示出大的拆下线路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号