首页> 外文会议>Technical conference of American Society for Composites >On the 'Shear Acoustic Wind' Acting on Particles Embedded in Liquid Crystal
【24h】

On the 'Shear Acoustic Wind' Acting on Particles Embedded in Liquid Crystal

机译:在嵌入液晶中的颗粒上的“剪切声风”

获取原文

摘要

The forces acting on macromolecules and small particles embedded in liquid crystalline (LC) media is of scientific and technological importance. The specific interaction between particles embedded in liquid crystals was discovered in 1978 by S.Lopatnikov and V.Namiot, who calculated the forces acting between particles of arbitrary shape embedded in a nematic and smectic liquid crystals [1] in both the absence and presence of the magnetic fields. S.Lopatnikov and V.Namiot also proposed also to use liquid crystals as a "smart solvents" for manipulation and separation of macromolecules and small particles [2]. They pointed out that the advantage of using LC as "smart solvents" for colloids with complex shape is that a "key-lock interaction" takes place during the interaction of particles and the fact that particles of the complex shape occupy in liquid crystal the most energetically effective orientation. Consequently, liquid-crystal colloids can be used for self-assembling and assembling of small objects. For example, the manipulation of the particles embedded in liquid crystal is now considered as the possible way for the assembling arrays of nano-tubes, separation of particles, etc. However, the challenge is how to provide increase forces to levels high enough for rapid and economical assembly and self-assembly of the embedded pariticles. The problem is that small-size particles are too light for fast sedimentation. Let us estimate, for example, the velocity of sedimentation of a single-wall carbon nano-tube having the length 10~(-3) cm and diameter 5*10~(-6)cm. The gravity force, acting on the particle and the velocity of sedimentation can be estimated as:f_G≈ 2pgLRh = 6.26 ? 3 ? 10~3 ?10~(-3) ? 5.10~(-7)0 * 10~(-8) = 10~(-13)Dy; V=F/4πηα=10~(-13)/ 4*3.14*l0~(-2)*5*l0~(-7)=lO~(-4)/62.8≈1.5*10~(-6)cm·s~(-1); This simple calculation shows that sedimentation of such tubes into a layer of 0.01 cm thick will need 7.10~4 seconds or 19 hours. Moreover, due to Brownian motion, this time will be practically infinite, because gravitational energy of these particles for this layer thickness is of the order of 10~(-15) erg, which is small in comparison with the room temperature (4.2*10~(-14)erg) A more practical approach to achieve oriented sedimentation of CNT [3] used a filtration through a penetrable LC substrate. The diameter of the pores was 10~(-5) to 2.10~(-5)cm and the area fraction occupied with pores (as estimated from the photographs in [3]) is in the range of 1%. Permeability of the material can be estimated as;
机译:作用于嵌入液晶(LC)媒体大分子和小颗粒的力量是科学和技术的重要性。在1978年被发现通过S.Lopatnikov和V.Namiot,谁计算嵌入在不存在和存在两个向列型和层列型液晶[1]的任意形状的颗粒之间作用的力嵌入液晶颗粒之间的特异性相互作用磁场。 S.Lopatnikov和V.Namiot还提出也使用液晶作为“智能溶剂”为操纵和大分子的分离和小颗粒[2]。他们指出,使用LC“智能溶剂”为具有复杂形状的胶体的优点是,“钥匙 - 锁相互作用”颗粒的相互作用和事实过程中发生的是,复杂形状的颗粒占据在液晶上的最积极有效的方向。因此,液晶性胶体可用于自组装和小物体的组装。例如,嵌入在液晶颗粒的操作现在被认为是用于纳米管,颗粒的分离,等等。然而的组装阵列的可能的方式,面临的挑战是如何提供增加的力的水平足够高的用于快速和经济的组装和自组装嵌入pariticles的。问题是,小尺寸的颗粒快速沉降过轻。让我们估计,例如,具有长度为10〜(-3)厘米和直径为5×10〜(-6)cm的单壁碳纳米管的沉淀的速度。重力,作用于颗粒和沉淀的速度可以被估计为:f_G≈2pgLRh = 6.26? 3? 10〜3?10〜(-3)? 5.10〜(-7)0 * 10〜(-8)= 10〜(-13)的Dy; V = F /4πηα= 10〜(-13)/ 4 * 3.14 * 10〜(-2)* 5 * 10〜(-7)= 1.0〜(-4)/62.8≈1.5*10~(-6)厘米·秒〜(-1);这个简单的计算表明,这样的管的沉降成0.01厘米厚层将需要7.10〜4秒钟或19小时。而且,由于布朗运动,这一次将实际上是无限的,因为这些颗粒对于该层厚度的重力能在10的数量级〜(-15)尔格,这是小的与房间温度比较(4.2 * 10 〜(-14)尔格)更实际的方法来实现CNT的面向沉降[3]通过可穿透的LC基板中使用的过滤。孔的直径为10〜(-5),以2.10〜(-5)厘米,分数占用与孔中的区域(如在从照片估计[3])是在1%的范围内。材料的磁导率可估计为;

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号