首页> 外文会议>Conference on Uncertainty in Artificial Intelligence >Sparse matrix-variate Gaussian process blockmodels for network modeling
【24h】

Sparse matrix-variate Gaussian process blockmodels for network modeling

机译:网络建模的稀疏矩阵变化Gaussian Process BlockModel

获取原文

摘要

We face network data from various sources, such as protein interactions and online social networks. A critical problem is to model network interactions and identify latent groups of network nodes. This problem is challenging due to many reasons. For example, the network nodes are interdependent instead of independent of each other, and the data are known to be very noisy (e.g., missing edges). To address these challenges, we propose a new relational model for network data, Sparse Matrix-variate Gaussian process Blockmodel (SMGB). Our model generalizes popular bilinear generative models and captures nonlinear network interactions using a matrix-variate Gaussian process with latent membership variables. We also assign sparse prior distributions on the latent membership variables to learn sparse group assignments for individual network nodes. To estimate the latent variables efficiently from data, we develop an efficient variational expectation maximization method. We compared our approaches with several state-of-the- art network models on both synthetic and real-world network datasets. Experimental results demonstrate SMGBs outperform the alternative approaches in terms of discovering latent classes or predicting unknown interactions.
机译:我们面对来自各种来源的网络数据,例如蛋白质互动和在线社交网络。关键问题是模拟网络交互并识别网络节点的潜在群体。由于许多原因,这个问题是具有挑战性的。例如,网络节点是相互依赖的而不是彼此独立,并且已知数据非常嘈杂(例如,缺少的边缘)。为了解决这些挑战,我们提出了一种新的网络数据关系模型,稀疏矩阵变化高斯过程块模型(SMGB)。我们的模型概括了流行的双线性生成模型,并使用矩阵变量的矩阵变量捕获非线性网络相互作用。我们还在潜在会员变量上分配稀疏的先前发行版,以便为各个网络节点学习稀疏组分配。为了从数据有效估计潜在变量,我们开发了有效的变分期预期最大化方法。我们将我们的方法与综合性和现实世界网络数据集的几种最先进的网络模型进行了比较。实验结果表明SMGBS在发现潜在的类别或预测未知的相互作用方面优于替代方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号