首页> 外文会议>Conference on Metrology, Inspection, and Process Control for Microlithography >Local CD variation in 65nm node with PSM processes STI topography characterization (I)
【24h】

Local CD variation in 65nm node with PSM processes STI topography characterization (I)

机译:具有PSM的65nm节点中的本地CD变化处理STI地形表征(I)

获取原文

摘要

How to effectively control the critical dimension (CD) is always a hot topic in photolithography. In 65nm node using phase shift mask (PSM) techniques, any factors related to CD variations should not be ignored without full investigation due to the ever-decreasing CD budget. In this paper, we focus on the local CD variation (LCDV) at the gate level within an area of 200μm x 200μm printed on a 193nm exposure tool. In contrast with AWLV (across wafer line variation) and ACLV (across chip line variation), the more localized LCDV implies that it is more dependent on the following three major factors: i) local wafer flatness mainly dominated by STI (shallow trench isolation) steps after CMP (chemical mechanical polishing); ii) effectiveness of OPC (optical proximity correction) covering all transistors with different geometrical shapes in circuit layout and iii) line edge roughness (LER) and line width roughness (LWR) related to photo and etch processes. Although OPC errors, LER and LWR are also very important, the current discussion will be limited in characterizing the relationship between LCDV and STI step-height (S-H) due to the length limitation. The STI S-H between the active surface and the trench oxide surface always exists due to the different material selectivity in the CMP process. The major gate CD influences from STI S-H are strongly correlated to the different geometrical shapes of transistors in circuits, such as single/multi-finger, wide/narrow, interior/exterior-flare and etc. According to our experiments and simulations from both alt-PSM (alternating PSM) and att-PSM (attenuating PSM) processes, the following important conclusions can be derived. a) The gate CDs in two PSM processes show different sensitivities to STI S-Hs in different geometrical shapes of transistors in circuit layout. The alt-PSM process is more sensitive than the att-PSM, especially for isolate gates. This is a shortcoming for the alt-PSM process in effectively controlling the LCDV. b) STI S-H usually makes the CD larger in both PSM processes, especially for the isolated gates in the alt-PSM process. From our observations, it is generally true that the narrower the transistor width, the higher the gate CD will be. However, CD variation trends in the att-PSM process are not so explicit as observed with alt-PSM. c) One should be very careful when trying to improve the CD uniformity by reducing STI step-height by using a blanket etch back because OPC errors are tightly combined with STI step-heights. d) Improving the STI S-H uniformity is always welcome because it will improve the AWLV. e) The narrow isolated gate is the best CD feature to monitor the interaction of AWLV with STI S-H uniformity.
机译:如何有效控制关键维度(CD)总是在光刻中的热门话题。在使用相移掩模(PSM)技术的65nm节点中,不应忽略与CD变化有关的任何因素,而不会因未减少的CD预算而全面调查。在本文中,我们专注于在193nm曝光工具上印刷的200μm×200μm面积内的栅极电平的本地CD变化(LCDV)。与AWLV(横跨晶片线变化)和ACLV(跨越芯片线变化)相比,更局部的LCDV意味着它更加依赖于以下三个主要因素:i)主要由STI(浅沟槽隔离)主导的本地晶圆平整度CMP(化学机械抛光)后的步骤; ii)OPC(光学接近校正)的有效性覆盖电路布局和III的不同几何形状的所有晶体管和与照片和蚀刻工艺相关的线边缘粗糙度(LER)和线宽粗糙度(LWR)。虽然OPC错误,LER和LWR也非常重要,但由于长度限制,目前的讨论将限制在表征LCDV和STI步进高度(S-H)之间的关系。由于CMP工艺中的不同材料选择性,有源表面和沟槽氧化物表面之间的STI S-H总是存在。 STI SH的主要闸CD影响与电路中的不同几何形状强烈相关,例如单/多指,宽/窄,内部/外部/外部/外部/外部光晕等。根据我们的实验和模拟来自alt的实验和模拟-PSM(交替PSM)和ATT-PSM(衰减PSM)过程,可以推导出以下的重要结论。 a)两个PSM过程中的栅极CD在电路布局中以不同几何形状的不同几何形状的STI S-HS显示不同的敏感性。 ALT-PSM过程比ATT-PSM更敏感,特别是用于隔离门。这是ALT-PSM过程有效控制LCDV的缺点。 b)STI S-H通常使得PSM过程中的CD更大,特别是在ALT-PSM过程中的隔离门。从我们的观察结果来看,晶体管宽度较窄,闸门CD越窄。然而,ATT-PSM过程中的CD变化趋势不是如ALT-PSM所观察到的那样明确。 c)在尝试通过使用橡皮布蚀刻来改善STI梯度高度时,试图改善CD均匀性时,应该非常小心,因为OPC误差与STI台阶高度紧密结合。 d)始终欢迎改善STI S-H均匀性,因为它将改善AWLV。 e)窄隔离门是最佳的CD功能,以监测AWLV与STI S-H均匀性的相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号