首页> 外文会议>AIAA Thermophysics Conference >Computation of Hypersonic Flow of a Diatomic Gas in Rotational Nonequilibrium Past a Blunt Body Using the Generalized Boltzmann Equation
【24h】

Computation of Hypersonic Flow of a Diatomic Gas in Rotational Nonequilibrium Past a Blunt Body Using the Generalized Boltzmann Equation

机译:使用广义Boltzmann方程计算旋转非质石中旋转非质纤的高超声气流动的计算

获取原文

摘要

The results of 2-D numerical simulations of hypersonic flow of a diatomic gas, e.g., Nitrogen past a 2-D blunt body at low to high Knudsen Numbers are presented. In a previous paper AIAA 2007-0205, flow field simulations in a monoatomic gas were reported by employing several computational models namely the Navier-Stokes equations, Burnett equations, Direct Simulation Monte Carlo (DSMC), and the classical Boltzmann equation. The effect of Knudsen number Kn varying from 0 01 to 10 was investigated for Mach 3 flow past a blunt body. In this paper, the hypersonic flow field past a blunt body in a diatomic gas is computed using the Generalized Boltzmann (or the Wang-Chang Uhlenbeck [1]) Equation (GBE) for Kn varying from 0.1 to 10 In the GBE [2], the internal and translational degrees of freedom are considered in the framework of quantum and classical mechanics respectively The computational framework available for the standard Boltzmann equation (for a monoatomic gas with translational degrees of freedom) [3] is extended by including the rotational degrees of freedom in the GBE. The general computational methodology for the solution of the GBE for a diatomic gas is similar to that for the standard BE except that the evaluation of the collision integral becomes significantly more complex due to the quantization of rotational energy levels. The solution of GBE requires modeling of transition probabilities, elastic and inelastic cross-sections etc. of a diatomic gas molecule, needed for the solution of the collision integral An efficient computational methodology has been developed for the solution of GBE for computing the flow field in diatomic gases at high Mach numbers. There are two main difficulties encountered in computation of high Mach number flows of diatomic gases with rotational degrees of freedom using the GBE: (1) a large velocity domain is needed for accurate numerical description of molecular velocity distribution function resulting in enormous computational effort in calculation of the collision integral, and (2) about 50 to 70 energy levels are needed for accurate representation of the rotational spectrum of the gas. These two problems result in very large CPU and memory requirements for shock wave computations at high Mach numbers (> 6) Our computational methodology has addressed these problems, and as a result efficiency of calculations has increased by several orders of magnitude.
机译:的双原子气体,例如氮的高超音速流过2-d钝头体在由低到高克努森数的2-d的数值模拟的结果。在过去的研究中AIAA 2007-0205,流场模拟单原子气体中通过采用多种计算模型即Navier-Stokes方程,Burnett方程,直接模拟蒙特卡洛(DSMC),以及经典的玻耳兹曼方程进行了报道。克努森数KN变从0 01至10影响进行了研究为3马赫流过去钝头体。在本文中,一个双原子气体中的过去的钝头体的高超音速流场是使用广义玻尔兹曼计算(或王昌乌伦贝克[1])等式(GBE)为KN 0.1至10改变在GBE [2]中,内部和平移自由度在量子和经典力学的框架分别为标准波尔兹曼方程可用的计算框架(用于与平移自由度的单原子气体)被认为是[3]由包括旋转度的扩展自由的GBE。用于GBE的一对双原子气体的溶液中的通用的计算方法类似于用于标准BE除了碰撞积分的评价变得显著更复杂,由于转动能级的量子化。 GBE的解决方案需要转移概率,弹性和非弹性横截面的双原子气体分子等,所需的碰撞积分的解决方案的一个有效的计算方法已经被开发用于GBE的解决方案,用于计算流场建模在高马赫数双原子气体。在使用GBE的旋转自由度的旋转自由度的旋转自由度的高马氏数量的计算中遇到了两个主要困难:(1)需要大的速度域,以准确计算分子速度分布函数的准确数字描述,从而在计算中进行巨大的计算工作碰撞积分,并且(2)需要约50至70个能级,以精确表示气体的旋转光谱。这两个问题导致在(> 6)我们的计算方法已经解决了这些问题高马赫数的冲击波计算非常大的CPU和内存要求,并作为计算的结果效率提高了几个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号