首页> 外文会议>Embedded topical meeting on advances in thermal hydraulics >CHF ENHANCEMENT BY NANOPARTICLES-COATED SURFACE IN FC-72 FLOW BOILING
【24h】

CHF ENHANCEMENT BY NANOPARTICLES-COATED SURFACE IN FC-72 FLOW BOILING

机译:CHF通过纳米颗粒涂层在FC-72流沸腾中提高

获取原文

摘要

CHF is the essential limiting parameter in the boiling. Among two CHF types in the flow boiling, departure from nucleate boiling (DNB) was investigated. It is well known that CHF can be enhanced by nanoparticles deposited on the heated surface. Thus, the effect of Al_2O_3 nanoparticles-coated surface on flow boiling CHF was studied. The CHF experiments are conducted under the atmospheric pressure using a FC-72 flow boiling loop. Al_2O_3 nanoparticles were coated on heater surfaces through quenching of test tubes using alumina nanofluids or dispersions. The nanoparticles-coated tube showed CHF enhancement up to 30% at maximum under 16°C, 21°C, 25°C inlet subcooling and 2000 kg/m~2s, 2500 kg/m~2s, 3000 kg/m~2s mass fluxes compared to the bare tube. The causes enhancing CHF are related to the rewetting process derived from capillary action through porous structures built-up by nanoparticles without improved wettability for the nanoparticles-coated surface compared to the bare surface since highly wettable FC-72 refrigerant was used as a working fluid. The CHF enhancement mechanisms were investigated through infrared thermometry for the temperature distribution of each test tube near CHF condition. As the results, the reduction of bubble coalescence phenomena due to the porosity and roughness effects raised by deposited nanoparticles was observed.
机译:CHF是在沸腾的基本限制参数。其中在流动沸腾2种CHF类型,从泡核沸腾(DNB)出发进行了研究。它公知的是CHF可以通过沉积在加热的表面上的纳米颗粒来增强。因此,Al_2O_3的效果纳米颗粒涂覆的表面上流动沸腾CHF进行了研究。在CHF的实验使用的是FC-72流动沸腾环路在大气压下进行。 Al_2O_3的纳米颗粒通过使用氧化铝纳米流体或分散体的试管的淬火涂覆在加热器表面上。纳米颗粒涂覆的管显示CHF下16℃,21℃,增强高达最大30%,25℃,进口过冷度和2000年公斤/米〜2S 2500千克/米〜2秒,3000千克/米〜2S质量相比于裸管通量。增强CHF的原因与从毛细作用通过建成由纳米颗粒而不对所述纳米颗粒涂覆的表面改善的润湿性比裸表面,因为高度可润湿FC-72的制冷剂被用作工作流体的多孔结构导出的再润湿过程。在CHF增强机制进行了通过红外测温附近CHF条件每个试管的温度分布的影响。作为结果,观察到的气泡聚集现象,由于孔隙率和由沉积的纳米颗粒提出粗糙度的影响减小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号