首页> 外文会议>Symposium on VLSI Technology >High Speed and Highly Cost effective 72M bit density S{sup}3 SRAM Technology with Doubly Stacked Si Layers, Peripheral only CoSix layers and Tungsten Shunt W/L Scheme for Standalone and Embedded Memory
【24h】

High Speed and Highly Cost effective 72M bit density S{sup}3 SRAM Technology with Doubly Stacked Si Layers, Peripheral only CoSix layers and Tungsten Shunt W/L Scheme for Standalone and Embedded Memory

机译:高速和高度成本效益的72M位密度S {SUP} 3 SRAM技术,具有双层堆叠的SI层,仅限外围的COSIX层和钨单位的独立和嵌入式内存方案

获取原文

摘要

There have been great demands for higher density SRAM in all area of SRAM applications, such as network and cache standalone memory, and embedded memory of the logic devices. Therefore, aggressive further shrinkage of 6T full CMOS SRAM has been progressed down to 32nm node by even using e-beam lithography and SOI wafer. Nevertheless, for the real production it is not an easy task to solve many fundamental limits of the linear shrink, such as cell instability due to increasing in variations of cell transistor characteristics, standby power consumption, and staggering fabrication yield from 45nm node. Furthermore, there exists uncertainty for the delivery of lithographic tools, such as EUV or super high NA ArF for patterning under 32nm dimensions. Therefore, various alternative embedded memory solutions such as capacitorless 1T DRAM, thyristor type RAM, and magnetic RAM have been proposed to replace planar 6T full CMOS SRAM. Their feasibility for the real mass production is still very uncertain due to adoption of new materials and new operational device physics. However, the S{sup}3 (Stacked Single-crystal Si) SRAM reported in our previous study[1] has been developed on the basis of the well proven Si technology. This technology can be easily implemented into the existing standard logic or memory process without any fundamental changes. The previously reported S{sup}3 SRAM technology had targeted the high density product, such as 288M bit with ArF lithography and 65nm node. However, in this study, the cost effectiveness and the compatibility with the standard planar CMOS process were pursued to utilize the low cost and fully proven technologies, such as KrF lithography, CoSix, and W damascene interconnections in terms of mass production.
机译:在SRAM应用程序的所有区域都有很大的要求,例如网络和缓存独立存储器,以及逻辑设备的嵌入式内存。因此,即使使用电子束光刻和SOI晶片也已经通过辐射进一步收缩到6T全CMOS SRAM的进一步收缩到32nm节点。然而,对于真实的生产,解决线性收缩的许多基本限制不是一件容易的任务,例如由于细胞晶体管特性,待机功耗和来自45nm节点的惊人的制造产量的增加而导致的电池不稳定性。此外,在32nm尺寸下,存在用于递送光刻工具的不确定度,例如用于图案化的EUV或超高NA ARF。因此,已经提出了各种替代嵌入式存储器解决方案,例如电容器1T DRAM,晶闸管型RAM和磁力RAM以替换平面6T全CMOS SRAM。由于采用新材料和新的运营设备物理,他们对真实批量生产的可行性仍然非常不确定。然而,我们以前的研究中报告的S {SUP} 3(堆积的单晶SI)SRAM是在经过熟悉的SI技术的基础上开发的[1]。该技术可以轻松实现到现有的标准逻辑或内存过程中,而无需任何根本的变化。先前报道的S {SUP} 3 SRAM技术针对高密度产品,例如288M位,ARF光刻和65nm节点。然而,在本研究中,追求了与标准平面CMOS过程的成本效益和兼容性,以利用低成本和全面证明的技术,例如KRF光刻,COSIX和W型梳地生互连。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号