首页> 外文会议> >Mineral dissolution at the granite-saprolite interface
【24h】

Mineral dissolution at the granite-saprolite interface

机译:花岗岩-腐泥土界面的矿物溶解

获取原文
获取原文并翻译 | 示例

摘要

The Rio Icacos watershed in Puerto Rico's Luquillo Experimental Forest is located on the Tertiary Rio Blanco quartz diorite bedrock mantled by 200-800 cm of saprolite. Previous workers have documented large differences in mineralogy and chemistry between the bedrock and the overlying saprolite. Those studies have predominately focused on wholesale changes between the bedrock and the saprolite. Herein we present a detailed examination of the weathering across the bedrock-saprolite interface. At the study site, the bedrock weathers spheroidally, forming corestones surrounded by 20-60 cm of concentric layers of weathering rock. We are exploring the chemistry and mineralogy of this complex interface between the corestones and saprolite at the microscale using inductively coupled plasma-mass spectrometry (ICP-MS), optical microscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and electron probe microanalysis (EPMA) to characterize the chemical and physical processes that propagate the weathering front. Preliminary results from EPMA and SEM indicate that weathering is localized in cracks and along the edges of the weathering rock layers. At the outer edge of the corestone and along cracks within the first spheroidal layer, both plagioclase and hornblende release Al in the presence of water and a hydrous aluminosilicate phase precipitates in the void space. ICP-MS results are used to calculate the open-system mass transport (loss or gain) of the elements with respect to the corestone, accounting for density differences across the sampled section. These calculations show that most of the spheroidal layers have a bulk chemistry similar to the corestone but slightly depleted in most elements, with the largest chemical differences in the layer adjacent to the saprolite. Across the interface zone, the average order of mobility of the cations is Ca > P > Na > Si > Al > Fe > Mg≈Mn > K > Ti.
机译:波多黎各卢基洛实验森林中的里约伊卡科斯分水岭位于第三纪里约布兰科石英闪长岩基岩上,基岩由200-800厘米的腐泥土覆盖。以前的工作人员已经记录了基岩和上覆的腐泥土之间在矿物学和化学上的巨大差异。这些研究主要集中在基岩和腐泥土之间的整体变化。本文中,我们对基岩-腐泥土界面的风化进行了详细的研究。在研究现场,基岩呈球状风化,形成被20-60 cm同心层风化岩石包围的岩心。我们正在使用电感耦合等离子体质谱(ICP-MS),光学显微镜,扫描电子显微镜(SEM),能量色散X射线光谱(EDS)在微观尺度上研究岩心石和腐泥土之间这种复杂界面的化学和矿物学)和电子探针显微分析(EPMA)来表征传播风化锋面的化学和物理过程。 EPMA和SEM的初步结果表明,风化作用局限于裂缝和风化岩石层的边缘。在岩心石的外边缘并沿第一球状层内的裂缝,斜长石和角闪石在水的存在下均释放出Al,并且含水铝硅酸盐相在空隙中沉淀。 ICP-MS结果用于计算元素相对于岩心的开放系统质量传输(损失或增益),并考虑了整个采样部分的密度差异。这些计算表明,大多数球状层具有类似于核岩的整体化学性质,但是大多数元素中的化学成分略有减少,在与腐泥土相邻的层中化学差异最大。整个界面区域,阳离子的平均迁移率顺序为:Ca> P> Na> Si> Al> Fe>Mg≈Mn> K> Ti。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号