首页> 外文会议>International Symposium on Water-Rock Interaction >Mineral dissolution at the granite-saprolite interface
【24h】

Mineral dissolution at the granite-saprolite interface

机译:花岗岩 - 皂石界面的矿物溶解

获取原文

摘要

The Rio Icacos watershed in Puerto Rico's Luquillo Experimental Forest is located on the Tertiary Rio Blanco quartz diorite bedrock mantled by 200-800 cm of saprolite. Previous workers have documented large differences in mineralogy and chemistry between the bedrock and the overlying saprolite. Those studies have predominately focused on wholesale changes between the bedrock and the saprolite. Herein we present a detailed examination of the weathering across the bedrock-saprolite interface. At the study site, the bedrock weathers spheroidally, forming corestones surrounded by 20-60 cm of concentric layers of weathering rock. We are exploring the chemistry and mineralogy of this complex interface between the corestones and saprolite at the microscale using inductively coupled plasma-mass spectrometry (ICP-MS), optical microscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and electron probe microanalysis (EPMA) to characterize the chemical and physical processes that propagate the weathering front. Preliminary results from EPMA and SEM indicate that weathering is localized in cracks and along the edges of the weathering rock layers. At the outer edge of the corestone and along cracks within the first spheroidal layer, both plagioclase and hornblende release Al in the presence of water and a hydrous aluminosilicate phase precipitates in the void space. ICP-MS results are used to calculate the open-system mass transport (loss or gain) of the elements with respect to the corestone, accounting for density differences across the sampled section. These calculations show that most of the spheroidal layers have a bulk chemistry similar to the corestone but slightly depleted in most elements, with the largest chemical differences in the layer adjacent to the saprolite. Across the interface zone, the average order of mobility of the cations is Ca > P > Na > Si > Al > Fe > Mg≈Mn > K > Ti.
机译:Rio Icacos在波多黎各的Luquillo实验森林中位于Tertiary Rio Blanco石英Dirite Bedrock搭配200-800厘米的羊毛岩。以前的工人在基岩和覆盖的藏石之间造成了巨大的矿物学和化学差异。这些研究主要集中在基岩和皂石之间的批发变化。在此,我们在基岩 - 皂石界面上提供了风化的详细检查。在研究现场,基岩瓦斯球体球形,形成由20-60厘米的耐候岩体周围的徽章。我们正在使用电感耦合等离子体质谱(ICP-MS),光学显微镜,扫描电子显微镜(SEM),能量分散X射线光谱(EDS)在微尺寸在微尺寸之间探索在Microssone和Saproite之间的化学和矿物质的化学和矿物质的化学和矿物学。(EDS )和电子探针微分析(EPMA),以表征传播风化前部的化学和物理过程。 EPMA和SEM的初步结果表明风化在裂缝中局部化,沿着风化岩层的边缘。在甲骨酮的外边缘和沿着第一球体层内的裂缝,在水存在下普拉基酶和Hornblende释放Al和含水铝硅酸盐相沉淀在空隙空间中。 ICP-MS结果用于计算关于CoreSone的元素的开放系统质量传输(丢失或增益),占采样部分的密度差异。这些计算表明,大多数球形层具有与大多数元素略微耗尽的散装化学,并且在大多数元件中具有较大的化学差异,与浆石相邻。横跨界面区域,阳离子的平均流动性顺序是Ca> P> Na> Si> Al> Fe>Mg≈M≈> K> Ti。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号