【24h】

Curl Plasma Antenna for SatCom Navigation Systems

机译:卫星通信导航系统用旋涡等离子体天线

获取原文

摘要

Gaseous Plasma Antennas (GPAs) have been defined as devices that exploit weakly or fully ionised gas to transmit and receive electromagnetic (EM) waves. GPAs can offer several advantages over metal antennas: when the plasma is turned "on", they are (i) electronically reconfigurable with respect to frequency, and gain on time scales the order of microseconds to milliseconds, and (ii) transparent to incoming EM waves whose frequency is greater than the plasma frequency. When the plasma is turned "off", the GPA reverts to a dielectric tube with a very low radar cross-section. Thus, a GPA can potentially achieve frequency hopping electronically, rather than mechanically, and reduce co-site interferences when several antennas are placed in proximity. Moreover, the reduced interferences make GPAs suitable to be stacked into arrays that can steer the beam electronically by switching on and off the plasma array elements. The reconfiguration and beam-steering capabilities, together with the reduced interferences, make GPAs very appealing for Satellite Communication (SatCom). especially in navigation systems (i.e., systems that provide geolocation and time information). In navigation systems, the antenna pointing and tracking obtained electronically, rather than vary ing the orbital attitude of the satellite, can be crucial. Navigation systems, as for example the European Galileo, require improvements on the navigation antennas: this is confirmed by the growing demand to identify and implement antennas that can enhance the capability of the constellation by ensuring more robust GPS service especially in GPS-denied environments or in regions where service is inconsistent. GPS antennas are required (i) to cover the L frequency band (1-2 GHz), and (ii) to use Circular Polarization (CP). This work presents the preliminary results of a curl GPA that works in the L-band, specifically designed for SatCom navigation systems in the framework of the Italian Space Agency (ASI) project "
机译:气体等离子体天线(GPA)被定义为利用弱电离或完全电离气体发射和接收电磁波的设备。与金属天线相比,GPA可以提供几个优势:当等离子体被“打开”时,它们(i)可以在频率方面进行电子重新配置,并在时间尺度上以微秒到毫秒的数量级进行增益,以及(ii)对频率大于等离子体频率的入射电磁波透明。当等离子体被“关闭”时,GPA恢复为具有非常低雷达截面的电介质管。因此,GPA可以潜在地通过电子方式而不是机械方式实现跳频,并在多个天线相邻放置时减少共址干扰。此外,减少的干扰使GPA适合堆叠成阵列,通过打开和关闭等离子体阵列元件以电子方式控制光束。可重构和波束控制能力,以及减少的干扰,使GPA对卫星通信(SatCom)非常有吸引力。尤其是在导航系统中(即提供地理位置和时间信息的系统)。在导航系统中,以电子方式获得的天线指向和跟踪,而不是改变卫星的轨道姿态,可能是至关重要的。导航系统,例如欧洲伽利略,需要改进导航天线:这一点得到了证实,因为越来越多的需求需要识别和安装天线,通过确保更可靠的GPS服务,尤其是在GPS拒绝的环境中或服务不一致的地区,可以增强星座的能力。GPS天线需要(i)覆盖L频段(1-2 GHz),以及(ii)使用圆极化(CP)。这项工作展示了在L波段工作的curl GPA的初步结果,该GPA是在意大利航天局(ASI)项目的框架内专门为卫星通信导航系统设计的。”

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号