【24h】

Planetary Exploration Using Cubesat Deployed Sailplanes

机译:使用CubeSat部署的Sailplanes的行星探索

获取原文

摘要

Exploration of terrestrial planets such as Mars are conducted using orbiters, landers and rovers. Cameras and instruments onboard orbiters have enabled global mapping of Mars at low spatial resolution(~ 1km). Landers and rovers such as the Mars Science Laboratory (MSL) carry state-of-the-art instruments to extensively characterize small localized areas. This leaves a critical gap in exploration capabilities: a mesoscale view mapping regions with one meter-scale resolution over hundreds of kilometers. A high science return/low cost solution is to deploy one or more sailplanes in the Martian atmosphere as secondary payloads deployed during Entry. Descent and Landing (EDL) of a MSL-class vehicle. These are packaged into 12U/24kg CubeSats, occupying some of the 190 kg of available ballasts. Sailplanes extend inflatable-wings to soar without power limitations by exploiting atmospheric features such as thermal updrafts for static soaring, and wind gradients for dynamic soaring. Such flight patterns have been proven effective on Earth, and demonstrated similarities between Earth and Mars show strong potential for a long lasting airborne science platform on Mars. The maneuverability of sailplanes offer distinct advantages over other exploration vehicles: they provide continuous reconnaissance of areas of interest from multiple viewpoints and altitudes with dedicated science instruments, achieving higher pixel-scale resolutions than orbital assets and enabling exploration capabilities over rugged terrain such as Valles Marineris, steep crater walls and the Martian highlands that remain inaccessible for the foreseeable future due to current EDL technology limitations. In this paper, we extend our work on CubeSat-sized sailplanes with detailed design studies of different aircraft configurations and payloads, identifying generalized design principles for autonomous sailplane-based surface reconnaissance and science applications. We further analyze potential wing deployment tech
机译:使用轨道,着陆器和群体进行火星等地面行星的探索。在轨道轨道上的相机和仪器在低空间分辨率(〜1km)中启用了全球MARS映射。火星科学实验室(MSL)等地上的着陆器和流浪者携带最先进的仪器,以广泛地表征小型局部区域。这在勘探能力中留下了临界差距:一个Messcale视图映射区域,一个米尺的分辨率超过数百千米。高科学返回/低成本解决方案是将Martian氛围中的一个或多个Saillan部署在进入期间部署的次要有效负载。 MSL级车辆的下降和着陆(EDL)。这些包装成12U / 24kg Cubeesats,占据了190公斤可用的镇流器中的一些。通过利用诸如静态飙升的热上升气流等热压的大气特征,滑翔箱将充气翅膀延伸到没有功率限制,以及用于动态飙升的风梯度。这些飞行模式已被证明是对地球有效,地球和火星之间的相似性表现出对火星持久的空中科学平台的强劲潜力。 Sailplanes的机动性提供了与其他探索车辆不同的优势:它们提供了与专用科学仪器的多个观点和高度的感兴趣领域的持续侦察,从而实现比轨道资产更高的像素级分辨率,并使Valles Marineris等坚固性地形上的勘探能力由于目前的EDL技术限制,陡峭的火山口墙和火星高地对可预见的未来保持无法进入。在本文中,我们将我们的工作扩展到CubeSat大小的Silplanes,具有不同飞机配置和有效载荷的详细设计研究,识别基于自动横向的表面侦察和科学应用的广义设计原则。我们进一步分析了潜在的翼部署技术

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号