首页> 外文会议>Meeting of the Electrochemical Society;International Meeting on Chemical Sensors >(Invited) Ultrafast Photocurrents from Interlayer Excitons in Twisted and Stacked 2D Materials
【24h】

(Invited) Ultrafast Photocurrents from Interlayer Excitons in Twisted and Stacked 2D Materials

机译:(邀请)超薄光电流从扭曲和堆叠的2D材料中的中间体激子

获取原文

摘要

Using time-space resolved ultrafast microscopy on individual 2D crystal grains, we show how long-range interlayer electronic coupling can be selectively enhanced either by applying an E-field or by twisting the layer stacking orientation. Considering first twisted bilayer graphene (tBLG), we discovered how stacking-angle tunable absorption resonances form a strongly-bound exciton state as a consequence of the symmetrized rehybridization of constrained interlayer 2p orbitals. Using two-photon photoluminescence and intraband-transient absorption microscopies, we have recently imaged the photoemission and exciton dynamics from single-grains of tBLG. After resonant excitation, our results suggest the formation of strongly-bound (up to 690 meV), quasi-stable interlayer exciton states. Unlike stacked graphene, semiconducting 2D transition metal dichalcogenides (TMDCs) have diffuse interlayer d-orbital overlap. To enhance interlayer electronic coupling in TMDCs, we apply an interlayer directed E-field, inducing electron-hole dissociation. Time-resolved photocurrents show that stacked WSe2 devices can have both IQE >50% and fast (<50 ps) picosecond electron escape times. Remarkably our photocurrent response function produces the same E-field-dependent electronic escape and dissociation rates for both the optical and PC addressed ultrafast measurements. To confirm the fast electronic escape rates, we show the ratio of the electronic rates accurately matches our overall TMDC device IQE in the limit of zero Auger recombination. Collectively, we show how optical and photocurrent-based ultrafast microscopies provide an accurate timeline of photocurrent generating dynanamics in both TMDCs and tBLG van der Waals materials.
机译:在各个2D晶粒上使用时间空间分辨超速显微镜,我们示出了通过施加电子场或通过扭转层堆叠方向可以选择性地增强多范围的层间电子耦合。考虑到首次扭曲的双层石墨烯(TBLG),我们发现了堆垛角可调吸收共振如何形成强烈的激子状态,因为受约束的中间层2P轨道的对称缩放。使用双光子光致发光和IntrAband-Transient吸收显微镜,我们最近从TBLG的单粒上成像了PhotoEmission和Exciton动态。经过共振激励后,我们的结果表明强烈地形成(高达690 MeV),准稳定的中间杂交态。与堆叠的石墨烯不同,半导体2D过渡金属二甲基化物(TMDC)具有弥漫性层间D-轨道重叠。为了增强TMDC中的层间电子耦合,我们应用层间导向E场,诱导电子孔解离。时间分辨的光电流表明,堆叠的WSE2器件可以具有IQE> 50%和快速(<50 ps)皮秒电子逃生时间。显着的,我们的光电流响应函数产生相同的电子现场依赖电子逃生和光学和PC的解离速率,用于光学和PC解决超快测量。为了确认快速的电子逃生率,我们显示电子速率的比率准确地与我们的整体TMDC设备IQE匹配在零螺旋钻重组的极限中。总的来说,我们展示了基于光学和光电流的超空间显微镜如何提供TMDCS和TBLG VAN DER WALS材料中的光电流产生Dynanics的精确时间表。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号