首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >Rationally Designed 3D Graphene Hollow Spheres Towards Building High Energy - High Power Energy Storage System with Long Durability
【24h】

Rationally Designed 3D Graphene Hollow Spheres Towards Building High Energy - High Power Energy Storage System with Long Durability

机译:合理设计的3D石墨烯空心球体朝向高能量高功率储能系统,长久性

获取原文

摘要

Functional materials with high energy density - high rate capabilities have continued to gain importance, and are extensively studied for next-generation energy storage applications. The ongoing challenge is to elevate the power density of batteries on par with capacitors, while holding the energy density and cycle life. The sluggish intercalation kinetics, and continuous transition metal dissolution in conventional electrodes hampers the realization of high power, and highly stable devices. To overcome the kinetic issues, we rationally designed graphene hollow nanospheres (GHNS) with dual heteroatoms (nitrogen and sulfur) as both anode and cathode for Na-ion based energy storage system. The self-assembly of 2D graphene into a highly connected 3D architecture facilitates facile Na-ion storage, while the nitrogen and sulfur hetero atoms infiltrated in the carbonaceous matrix elevates the kinetics of the GHNS. The full-cell based on GHNS electrodes displays a high operating voltage, high energy density (121 Wh kg~(-1) at 100 W kg~(-1)), and high power density (51 kW kg~(-1)). Further, the sodium-ion storage system can render remarkable cycling stability of ~85% retention after 10,000 cycles (~0.0015% decay per cycle). Development of such nanostructured functional materials could establish a trade-off relationship between high energy and high power devices.
机译:具有高能量密度 - 高速率能力的功能材料持续增强,并广泛研究了下一代储能应用。持续的挑战是提升电池的电力密度与电容器相连,同时保持能量密度和循环寿命。常规电极中的缓慢嵌入动力学和连续过渡金属溶解妨碍了高功率和高稳定装置的实现。为了克服动力学问题,我们将具有双杂原子(氮气和硫)的石墨烯空心纳米球(GHNS)设计为Na离子基能量存储系统的阳极和阴极。将2D石墨烯的自组装成高度连接的3D架构有助于容易进行Na离子储存,而在碳质基质中渗透渗透的氮和硫杂原子升高了GHN的动力学。基于GHNS电极的全电池显示出高的工作电压,高能量密度(121WH kg〜(-1),高功率密度(51 kg kg〜(-1) )。此外,钠离子储存系统可以在10,000个循环后保持〜85%的循环稳定性〜85%(每循环衰减〜0.0015%)。这种纳米结构材料的开发可以在高能量和高功率器件之间建立权衡关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号