首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >(Invited) Synthesis of Photoactive Hexagonal-Shape GaN Nanoplate Using Solid Nitrogen Source in Molten Salt
【24h】

(Invited) Synthesis of Photoactive Hexagonal-Shape GaN Nanoplate Using Solid Nitrogen Source in Molten Salt

机译:(诱人)使用熔盐中的固体氮源合成光活性六方形GaN纳米层板

获取原文

摘要

Gallium nitride (GaN), is a group III nitride semiconductor. Thin films of GaN have been widely adopted for both commercial and fundamental research, such as in light-emitting diodes (LEDs) and UV light water-splitting. Much interest has also been paid to the creation of nanostructures of GaN including the morphology of wires, rods, sheets, seeds and hollows. The nitridation reactions are often conducted using gas flow techniques for growing GaN crystals. In this process, a nitrogen-rich gas, such as ammonia, is usually used as a source of nitrogen. We have reported a new technique to synthesize low cost GaN powder under moderate condition. Li_3N or LiNH_2 were used as a high reactive solid nitrogen source to improve the reaction rate and lowering the reaction temperature. Crystalline wurtzite GaN powder with several hundred nanometer size was successfully synthesized. But the reaction yield was not so high because its solid phase reaction. Molten salts are often used as reaction media to increase the reaction rate and the crystallinity of ceramics. In this study, the synthesis of GaN nanoplate has been established by using LiCl as the molten salt at relatively low temperatures. Also, we anticipated that the formation of hexagonal-shape GaN nanoplates instead random-shaped crystals could enhance the charge transport in the photoelectrochemical applications. Here, we present the effect of the molten salt on the crystal growth of the GaN microstructure and the photoelectrochemical properties of the GaN electrodes.
机译:氮化镓(GaN)是III族氮化物半导体。 GaN的薄膜已被广泛采用商业和基础研究,例如发光二极管(LED)和UV轻水分裂。还有很多兴趣已经支付给GaN的纳米结构,包括导线,棒,床单,种子和空洞的形态。通常使用用于生长GaN晶体的气体流动技术进行氮化反应。在该方法中,通常用作氮气的富含氮气,例如氨。我们报告了一种新的技术在中等条件下合成低成本GaN粉末。 Li_3N或LinH_2用作高反应性固体氮源以改善反应速率并降低反应温度。成功合成了具有数百纳米尺寸的结晶紫立岩GaN粉末。但是,由于其固相反应,反应产率并不如此高。熔盐通常用作反应介质以增加反应速率和陶瓷的结晶度。在该研究中,通过使用LiCl在相对低温下使用LiCl作为熔盐来建立GaN纳米板的合成。而且,我们预计六边形GaN纳米板的形成代替随机形晶体可以增强光电化学应用中的电荷输送。这里,我们呈现熔融盐对GaN微观结构的晶体生长和GaN电极的光电子化学性质的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号