首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >Enhanced High-Temperature Stability of Li-Ion Battery with Li-Rich Oxide Cathode By Localized High-Concentration Electrolyte
【24h】

Enhanced High-Temperature Stability of Li-Ion Battery with Li-Rich Oxide Cathode By Localized High-Concentration Electrolyte

机译:通过局部高浓度电解质提高锂离子电池的高温稳定性锂氧化物阴极

获取原文
获取外文期刊封面目录资料

摘要

Lithium (Li)-rich manganese (Mn)-rich oxides (LMR) have been considered as feasible cathode materials for high-energy lithium ion batteries because they possess high theoretical specific energy over 900 Wh kg~(-1). However, the undesirable cathode/electrolyte interfacial reaction due to the high working voltages, which results in electrolyte decomposition, transition-metal ion dissolution and surface corrosion, is considered one of the obstacles that significantly prevent their applications in electric vehicles for years. Although numerous efforts have been devoted to address the surface stability issues on LMR, most of them were limited to room temperature. The continuous upsurge in demand for electric vehicles requires lithium ion batteries to be operated under elevated temperatures. While, the state-of-the-art LiPF_6-organocarbonate electrolytes are not compatible with LMR cathode due to the high operating voltage, which also get worse at elevated temperatures. Here, an optimized localized high-concentration electrolyte (LHCEs) is studied in graphite (Gr)-based LMR full cells at 25, 45 and 60°C. The cycling stabilities and the interfacial properties on the surfaces of both cathode and anode under different temperatures are systemically investigated. It is revealed that the LHCE enables the formation of more protective electrode/electrolyte interphases on both anode and cathode, which, in turn, lead to significantly improved cycling stability and enhanced rate capability under the selected temperatures. The electrode/electrolyte interphases formed in LHCE are found to be less susceptible towards elevated temperatures than those in conventional LiPF_6-based electrolyte. The mechanistic understanding on the function of the LHCE in Gr||LMR cells under high temperatures provides valuable perspectives of electrolyte development for practical application of LMR cathodes in high energy density batteries over a wide temperature range.
机译:锂(Li)-RICH锰(Mn) - 氧化锂(LMR)被认为是高能量锂离子电池的可行的阴极材料,因为它们具有超过900WH〜(-1)的高理论特异性能量。然而,由于高工作电压导致电解质分解,过渡金属离子溶解和表面腐蚀导致的不希望的阴极/电解质界面反应被认为是显着防止它们在电动车辆中的应用多年的障碍物之一。虽然已经致力于解决LMR上的表面稳定性问题,但大多数努力都仅限于室温。电动车辆需求的连续上升需要在升高的温度下操作锂离子电池。虽然,最先进的LiPF_6-有机碳酸盐电解质由于高工作电压而与LMR阴极不兼容,但在高温下也变得更糟。这里,在25,45和60℃下,在石墨(GR)中研究了优化的局部高浓度电解质(LHCE)。在不同温度下,在不同温度下的阴极和阳极表面上的循环稳定性和界面性质进行全面地研究。据透露,LHCE使得能够在阳极和阴极上形成更多的保护电极/电解质差异,这又导致在所选温度下显着提高循环稳定性和增强的速率能力。发现在LHCE中形成的电极/电解质介质比常规LIPF_6电解质中的温度较低。在高温下GR || LMR细胞LHCE在GR | LMR细胞功能的机械理解提供了电解质开发的有价值的视角,用于在宽温度范围内高能量密度电池中的LMR阴极进行实际应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号