首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >Quenching Method and Performance of High Voltage Layered Lithium Rich Nickel Manganese Oxides
【24h】

Quenching Method and Performance of High Voltage Layered Lithium Rich Nickel Manganese Oxides

机译:高压层状锂富含镍锰氧化物的淬火方法和性能

获取原文

摘要

Due to their promise of high specific capacity layered lithium rich nickel manganese oxide materials have a large body of literature dedicated to their structure, and electrochemical behaviors. Yet these materials have often been marred by significant capacity losses, rate capability limitations, and structural instability over the course of cycling. Several techniques involving surface and structural modifications have been used to mitigate these capacity losses. In this work we used a hybrid acetate/nitrate precursors and sol-gel/combustion synthesis to conduct an unprecedented combined survey of the composition of Li(Ni_xLi_((1/3-2x/3))Mn_((2/3-x/3)))O_2, and synthetic quench rates to elucidate the effects of these variables on electrochemical cycling behavior, bulk morphology, and surface morphology of the layered lithium rich manganese oxides. We find that the electrochemical behavior of these materials is dependent on both the nickel content as well as the quenching method, with a lower limit on the nickel content beyond which the effects of quenching are minimal. Despite XRD revealing loss of super lattice peaks indicating a loss of transition metal ordering, often associated with capacity loss, galvanostatic cycling of samples saw improved capacities over the course of cycling. SEM found bulk morphology of cathodes differs across nickel contents, yet it did not experience large changes over the course of cycling. The use of TEM found that the surfaces of Li(Ni_xLi_((1/3-2x/3))Mn_((2/3-x/3)))O_2 powders is highly sensitive to quenching method, and comparison of surfaces over the course of cycling provided incites into the effects of quenching and nickel content on electrochemical cycling behaviors of the cathode materials. This investigation reveals that careful considerations in synthesis are required for the realization of high-performance layered lithium rich nickel manganese oxides.
机译:由于他们对富含高特定容量的承诺,富含镍锰氧化物材料具有致力于其结构的大体积和电化学行为。然而,这些材料经常通过显着的容量损失,速率能力限制和在循环过程中产生的结构不稳定。已经使用了涉及表面和结构修改的几种技术来减轻这些容量损耗。在这项工作中,我们使用杂化醋酸盐/硝酸盐前体和溶胶 - 凝胶/燃烧合成,对Li(Ni_xli _((1/3-2x / 3))Mn _((2/3-x)的组成进行前所未有的组合调查((2/3-x / 3)))O_2和合成骤冷速率,以阐明这些变量对电化学循环行为,体形态和富含层锂锰氧化物的表面形态的影响。我们发现这些材料的电化学行为取决于镍含量以及淬火方法,镍含量的下限超过,淬火的效果最小。尽管XRD泄漏损失的超晶格峰值表明过渡金属排序损失,通常与容量损失相关,样品的电流静止循环在循环过程中看到了改善的能力。 SEM发现的阴极体形态不同于镍内容物的不同,但它在循环过程中没有经历大的变化。使用TEM发现Li(NI_XLI _((1/3-2x / 3))Mn _((2/3-x / 3)))O_2粉末对淬火方法非常敏感,以及表面上的比较循环过程中的疗程为阴极材料的电化学循环行为进行了抗淬火和镍含量的影响。本研究表明,在实现高性能层状锂镍锰氧化物中需要仔细考虑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号