首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >Unlocking Multiphysics Design Guidelines on Si/C Composite Nanostructures for Next Generation High-Energy-Density and Robust Lithium-Ion Battery Anode
【24h】

Unlocking Multiphysics Design Guidelines on Si/C Composite Nanostructures for Next Generation High-Energy-Density and Robust Lithium-Ion Battery Anode

机译:解锁综合纳米复合纳米结构对下一代高能量密度和鲁棒锂离子电池阳极的多体设计指南

获取原文

摘要

Lithium ion batteries (LIBs) have been one of the most popular energy storage devices in many fields. Along with the development of the LIBs, high energy density becomes one of the most urgent requests in the market. To achieve this goal, high capacity anode materials are attracting more and more research interests, among which the Si related material is one of the most promising candidates for next generation LIBs. The biggest problem of Si related materials is the tremendous volume change during the cycling. Thus, many strategies have been proposed to solve this problem, e.g. nano engineering, composites, etc. The Si/C composite material, is widely adopted because it has the advantage of nanomaterials as well as compensates the weakness of nano-properties. Current material fabrication guidance for novel designs of Si/C composite particle materials for anode only focuses on electrochemical behavior and redox reactions at the nano/micro level; however, they cannot provide detailed information for predicting mechanical deformations of the composite particles especially coupled with electrochemical and thermal fields. Herein, an electro-chemo-mechanical model is established and implemented to quantitatively analyze the multiphysics behavior of five representative Si/C composite nanostructures. Numerical simulation manifests that yolk-shell and dual-shell structures are more robust in terms of particle fractures. With the consideration of electrochemical performance, the yolk-shell structure is the most excellent type among the compared five Si/C composites. Finally, design guidance is mapped to further illustrate quantitative structure-property relations. This study provides novel insights on Si/C composite nanostructure anode material design and further powerful design tools for next-generation high-energy-density lithium-ion batteries.
机译:锂离子电池(LIBS)是许多领域中最流行的能量存储设备之一。随着LIB的发展,高能量密度成为市场上最紧急的要求之一。为实现这一目标,高容量的阳极材料吸引了越来越多的研究兴趣,其中SI相关材料是下一代LIBS最有希望的候选人之一。 SI相关材料的最大问题是骑自行车过程中的巨大体积变化。因此,已经提出了许多策略来解决这个问题,例如,纳米工程,复合材料等。Si / C复合材料是广泛采用的,因为它具有纳米材料的优点,以及补偿纳米性能的弱性。用于阳极的Si / C复合颗粒材料的新设计目前的材料制造指南仅侧重于纳米/微水平的电化学行为和氧化还原反应;然而,它们不能提供详细信息,用于预测与电化学和热场相耦合的复合颗粒的机械变形。这里,建立和实施电气化学机械模型,以定量分析五种代表性Si / C复合纳米结构的多体性行为。在颗粒骨折方面,蛋黄壳和双壳结构的数值模拟表现出尤利壳和双壳结构。考虑到电化学性能,蛋黄壳结构是最优异的五种Si / C复合材料。最后,映射设计指导以进一步说明定量结构 - 财产关系。本研究提供了关于Si / C复合纳米结构阳极材料设计以及用于下一代高能密度锂离子电池的进一步强大的设计工具的新颖见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号