首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >Block-Copolymer Derived Nanoporous Thin Films for the Development of a L-BMAA Aptamer-Based Impedimetric Biosensor
【24h】

Block-Copolymer Derived Nanoporous Thin Films for the Development of a L-BMAA Aptamer-Based Impedimetric Biosensor

机译:嵌段共聚物衍生的纳米多孔薄膜,用于开发L-BMAA适体的阻抗生物传感器

获取原文
获取外文期刊封面目录资料

摘要

Produced by diverse cyanobacteria, b-N-methylamino-l-alanine (L-BMAA) is a non-protein neurotoxic cyanotoxin that has been linked to an elevated incidence of neurodegenerative diseases such Parkinson's and Alzheimer's disease and Multiple Lateral Sclerosis. The continuing rising of water temperatures and eutrophication of the water bodies propitiate the increment and size of harmful algal blooms, subsequently increasing the production of L-BMAA and other cyanotoxins. This toxin is known to bioaccumulate in plants, animals and humans. Currently, the detection of L-BMAA in water is limited by its hydrophilicity, absence of ultraviolet and fluorescent properties, and the isomers that cause false positives. Given the threat that this cyanotoxin could represent to the long-term human health, it is imperative to develop new analytical techniques for its detection in water. Therefore, this project proposes the development of an impedimetric aptamer-based biosensor, using block-copolymer (BCP's) derived nanoporous thin films as the electrode, for the detection of L-BMAA. Our hypothesis is that the development of such aptasensor will lead to the advancement of an innovative device for a sensitive, portable, economic and flexible way to achieve the detection of the cyanotoxin in water. To achieve this, we used BCP polystyrene-poly(methylmethacrylate) (PS-b-PMMA), known to form cylinder-like structures, to create recessed nanodisk-array electrodes (RNEs). These cylindrical nanostructures provide primary mass transport pathways for ionic and redox active species which changes upon analyte binding, making them ideal to use in biosensing applications. The nanoporous electrodes were prepared by spin-coating a PS-b-PMMA solution in toluene over gold-coated silicon wafers, followed by thermal annealing and UV etching. Different annealing times, temperatures and UV exposure has been used in order to produce the alignment of the cylindrical polymer microdomains in a vertical fashion over the surface of the electrode. The prepared films were characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), to confirm the formation of RNE's. Under specific sets of conditions, CV data shows sigmoidal curves at high scan rates characteristic of RNE's, suggesting the formation of this type of nanopores with a sufficiently large distance among them to attain radial diffusion. Atomic force microscopy (AFM) images of the samples evidence the formation of vertical nanopores but mixed with horizontal alignments. Furthermore, grazing incident small angle x-ray scattering (GISAXS) suggests that the polymer was well-dispersed among the surface although the expected scattering profile for RNEs is missing. Future work includes the optimization of the electrode preparation methods and the selection of a L-BMAA specific aptamer through graphene oxide-assisted selection evolution of ligands by exponential enrichment (GO-SELEX).
机译:由多样化的蓝细菌产生,B-N-甲基氨基-L-丙氨酸(L-Bmaa)是一种非蛋白质神经毒性氰松毒素,其与帕金森和阿尔茨海默病的神经退行性疾病的发生率升高,并多次侧向硬化。水温的持续上升和水体的富营养化促进了有害藻类盛开的增量和规模,随后增加了L-BMAA和其他氰松坦的生产。这种毒素是在植物,动物和人类中生物累积的。目前,水中L-BMAA的检测受其亲水性,不存在紫外线和荧光特性的限制,以及导致误报的异构体。鉴于这种氰毒素可以代表长期人体健康的威胁,必须开发新的分析技术在水中的检测。因此,该项目提出了使用作为电极的嵌段共聚物(BCP)衍生的纳米多孔薄膜作为电极的基于阻抗基于适体的生物传感器的开发,用于检测L-BMAA。我们的假设是,这种自动化传感器的发展将导致创新设备的进步,以实现敏感,便携,经济和灵活的方式,以实现水中的氰毒素的检测。为此,我们使用BCP聚苯乙烯 - 聚(甲基丙烯酸甲酯)(PS-B-PMMA),已知形成圆柱形结构,以产生嵌入的纳米型渔盘阵列电极(RNES)。这些圆柱形纳米结构提供了用于离子和氧化还原活性物种的主要质量传递途径,其改变分析物结合,使其成为生物传感应用的理想选择。通过在镀金硅晶片上旋涂PS-B-PMMA溶液,然后进行热退火和UV蚀刻来制备纳米多孔电极。已经使用不同的退火时间,温度和紫外线暴露,以便在电极表面上以垂直方式产生圆柱形聚合物微摩擦的对准。使用循环伏安法(CV)和电化学阻抗光谱(EIS)表征制备的薄膜,以确认RNE的形成。在特定的条件集下,CV数据显示RNE的高扫描速率特征的矩形曲线,表明这种类型的纳米孔的形成具有足够大的距离,以获得径向扩散。样品的原子力显微镜(AFM)图像的图像证据是垂直纳米孔的形成,但与水平对准混合。此外,放牧入射的小角度X射线散射(吉亚斯)表明聚合物在表面中很好地分散,尽管缺少了rnes的预期散射轮廓。未来的工作包括通过指数富集(GO-SELEX)通过石墨烯氧化物辅助选择演化来优化电极制备方法和选择L-BMAA特异性适体的选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号