首页> 外文会议>IAF/IAA Space Life Sciences Symposium;International Astronautical Congress >The Brain in Deep Space: Identifying 'Potential' Synergistic Risks to Behavior and Performance from Space Radiation, Isolation and Confinement, and Altered Gravity
【24h】

The Brain in Deep Space: Identifying 'Potential' Synergistic Risks to Behavior and Performance from Space Radiation, Isolation and Confinement, and Altered Gravity

机译:深度空间中的大脑:从空间辐射,隔离和禁闭和改变的重力中识别行为和性能的“潜在”协同风险

获取原文

摘要

Space exploration beyond the protection of the Van Allen Belt will expose humans to levels of galactic cosmic radiation that are known to cause behavioral performance decrements in animals. Given this evidence, NASA's Johnson Space Center's Human Research Program (HRP) has directed three of its risk areas to integrate their research efforts to assess risk to astronauts' behavioral performance from the combined effects of the three major spaceflight hazards (space radiation; isolated, confined, and extreme environments; altered gravity). This completely integrated approach will systematically identify and investigate the relationships amongst three risks: Risk of Acute (In-flight) and Late Central Nervous System Effects from Radiation (CNS); Risk of Adverse Cognitive or Behavioral Conditions and Psychiatric Disorders (BMed); and Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Spaceflight (SM). We review relevant animal research on the effects of simulated Galactic Cosmic Ray (GCR), the impacts to the sensorimotor system from simulated gravity modifications such as hindlimb unloading, and the effects of isolation and confinement. We also describe how the integrated research will focus on identifying operationally relevant measures of behavioral performance, along with assessments of brain physiology, neurovascular unit integrity, molecular signalling, and changes in biomarkers, to generate data sets that can be incorporated into computational models. Evidence shows that a number of identified environmental stressors, including altered gravity, sleep loss, radiation exposure, and isolation and confinement can all lead to dysregulation of the brain's structure and microenvironment, leading to imbalanced function of neuronal and glial networks and the neurovascular unit. The magnitude of physical and biological stressors during a space mission is believed to vary by mission phase
机译:超越范围保护范围的空间探索将使人类暴露于已知导致动物行为性能下降的银河宇宙辐射水平。鉴于这一证据,美国宇航局的约翰逊航天中心的人类研究计划(HRP)指导了三个风险领域,以将他们的研究努力纳入宇航员行为性能,从三个主要航天危险的综合影响(空间辐射;隔离的效果;限制和极端环境;重力改变)。这种完全综合的方法将系统地识别和调查三种风险之间的关系:急性(飞行中)和晚期中枢神经系统的风险来自辐射(CNS);不良认知或行为条件和精神疾病的风险(BMED);与航天器/相关系统控制的控制受损的风险,并且由于与空间(SM)相关的前庭/传感器改变而降低的流动性。我们审查了关于模拟银河宇宙射线(GCR)的影响的相关动物研究,从模拟重力修改的诸如后肢卸载等模拟重力修改的影响以及隔离和限制的影响。我们还描述了综合研究如何关注识别行为性能的操作相关措施,以及脑生理学,神经血管单位完整性,分子信令和生物标志物的变化的评估,以产生可以结合到计算模型中的数据集。证据表明,许多识别的环境压力源,包括改变的重力,睡眠损失,辐射照射,以及隔离和限制都可以导致大脑的结构和微环境的失调,导致神经元和胶质网络和神经血管单元的不平衡功能。在空间任务期间的物理和生物压力源的大小被认为因任务阶段而异

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号