首页> 外文会议>ALTA Uranium-Ree-Lithium Conference;Lithium Processing Forum;ALTA Annual Conference >LEPIDOLITE PROCESSING USING SULPHATION BAKING: A COMPARISON AGAINST CONVENTIONAL PROCESSING FLOWSHEETS
【24h】

LEPIDOLITE PROCESSING USING SULPHATION BAKING: A COMPARISON AGAINST CONVENTIONAL PROCESSING FLOWSHEETS

机译:利用硫酸盐烘焙的锂岩加工:与传统加工流量的比较

获取原文

摘要

Processing of hardrock Li-bearing minerals other than spodumene and petalite are challenging due to the reduced grades of Li and increased reagent costs associated with impurity rejection prior to production of a saleable lithium chemical concentrate. In the current climate however, Li-bearing micas such as lepidolite and zinnwaldite have attracted significant commercial attention as potential development targets. A number of extraction processes for Li-bearing micas have been outlined in the public domain. Many of these processes have been reported for mineral concentrates, although some have examined the direct use of ore. Whether involving a mineral concentrate or ore, the unit processes employed to 'crack' the Li-bearing micas have typically involved air roasting, suphation roasting or acid leaching. A number of less common approaches such as sodium sulfide mechanochemical activation, chlorination and carbonate pressure leaching do not appear to have attracted any commercial interest. Energy cost sensitivity is arguably the most important economic factor affecting the use of roasting and sulphation roasting process flowsheets. Moreover, despite reasonable rejection up-front of the major gangue elements, significant effort is still required to manage alkali elements (Na, K, Rb and Cs) in the downstream circuit, plus rejection of a extended suite of minor and trace impurities.ANSTO Minerals has had significant exposure to both brine and hardrock Li projects for the last six years, providing us with a unique breadth of Li processing experience. From our perspective, aside from the energy cost sensitivity, a key risk to realising the value of Li-bearing micas via roasting and sulphation roasting process flowsheets is the need to remove alkali sulphates (Na and K) via crystallisation steps (evaporative and / or cooling) and the lack of specific impurity removal steps from the downstream hydrometallurgical processing steps. As a possible alternative processing approach, we have examined a hybrid approach involving sulphation baking up-front and downstream processing specifically aimed at readily and cost effectively rejecting the major gangue elements, along with problematic minor and trace impurities. The development of a simple reagent-free, impurity rejection method early in the flowsheet has significantly simplified the overall process flowsheet. This presentation will outline and discuss this approach and its application to lepidolite ore.
机译:由于锂等级降低,含量减少的含量和岩石物以外的硬r次耐矿物的加工是挑战性的,并且在生产销售锂化学浓缩物之前,与杂质排斥有关的试剂成本增加。然而,在目前的气候中,Li-轴承的云母如Lepidolite和Zinnwaldite在潜在的发展目标中引起了显着的商业关注。在公共领域概述了锂轴承云母的许多提取过程。据报道,矿物浓缩物的许多方法虽然有些人已经检查了矿石的直接使用。无论是涉及矿物浓缩物还是矿石,用于“裂纹”锂轴承云母的单位过程通常涉及空气烘烤,抑制焙烧或酸浸出。许多不太常见的方法,如硫化钠机械化学活化,氯化和碳酸盐压力浸出,并不吸引任何商业兴趣。能源成本敏感性可以说是影响焙烧和硫化烘焙过程流程曲线使用的最重要的经济因素。此外,尽管合理排斥主要的煤矸石元素,但仍然需要在下游电路中管理碱性元素(Na,K,Rb和Cs),加上抑制延长的次要杂质和痕量杂质.ANSTO矿物质在过去的六年里,盐水和强硬李项目有很大意识,为我们提供了独特的LI加工经验。从我们的角度来看,除了能量成本敏感性之外,通过焙烧和硫酸盐焙烧过程流程的关键风险是通过焙烧和硫酸化烘焙过程流程的需要通过结晶步骤(蒸发和/或蒸发和/或蒸发和/或冷却)和缺乏来自下游液压冶金加工步骤的特定杂质去除步骤。作为一种可能的替代处理方法,我们研究了一种混合方法,涉及硫化的诱导前沿和下游加工,具体旨在旨在有效地拒绝主要的甘蓝元素以及有问题的核心和痕量杂质。在流程图早期开发简单的试剂,无杂质排斥方法,大大简化了整个过程流程。本演示文稿将概述并讨论这种方法及其在Lepidolite Ore的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号