首页> 外文会议>U.S. National Combustion Meeting >A multi-approach algorithm for enabling efficient application of very large, highly detailed reaction mechanisms in multidimensional HCCI engine simulations
【24h】

A multi-approach algorithm for enabling efficient application of very large, highly detailed reaction mechanisms in multidimensional HCCI engine simulations

机译:一种多维HCCI发动机模拟中有效应用非常大,高度详细的反应机制的多方法算法

获取原文

摘要

Predictive modeling of Homogeneous Charge Compression Ignition (HCCI) engine performance requires application of detailed reaction mechanisms. However, the computational cost of applying large mechanisms is prohibitive for practical multi-dimensional HCCI engine simulations. In the present paper, we describe a hybrid approach that combines on-the-fly mechanism reduction based on Directed Relation Graph with Error Propagation (DRGEP) method, Graphics Processing Unit (GPU) computing, and Adaptive Multi-grid Chemistry (AMC) model approaches to enable efficient application of highly detailed reaction mechanisms in multi-dimensional HCCI engine simulations. We demonstrate the performance of this hybrid approach using a very large, detailed biodiesel surrogate fuel mechanism which contains 2877 species and 8555 reactions (the methyl decanoate (MD) mechanism of Herbinet, Pitz and Westbrook). Up to 300-fold speed-up was achieved in single-zone HCCI engine simulations using on-the-fly mechanism reduction coupled with GPU computing, relative to the usual approach of using a single full-chemistry model without using a GPU. In addition, the simulation results using the accelerated chemistry solver agree with those of the full chemistry solver excellently. The AMC approach was then incorporated into this hybrid framework, for further acceleration in multi-dimensional simulations by grouping thermodynamically-similar computational cells. Combining these three techniques, we show that a 2-D HCCI engine simulation of the MD mechanism with either homogenous charge or stratified charge can be completed within only thirteen hours on a personal computer (PC) equipped with a Tesla C2050 GPU card - less time than is required to complete a single-zone (0-D) simulation on the same PC using the traditional CPU-only full chemistry approach. These results demonstrate the cumulative benefits attainable by combing multiple available methodologies for enhancing combustion modeling efficiency. The algorithm developed in this work enables incorporation of significantly greater detail (simultaneous application of higher-fidelity transport and chemistry models without prohibitive costs) than was previously possible for modeling HCCI engines.
机译:均匀电荷压缩点火(HCCI)发动机性能的预测建模需要应用详细的反应机制。然而,应用大机制的计算成本对于实际的多维HCCI发动机模拟是禁止的。在本文中,我们描述了一种混合方法,它基于误差传播(DRGEP)方法,图形处理单元(GPU)计算和自适应多网格化学(AMC)模型的指向关系图结合了基于针对的关系图。能够在多维HCCI发动机模拟中实现高度详细的反应机制的方法。我们展示了这种混合方法使用非常大的细节的生物柴油替代燃料机制的性能,该燃料机制包含2877种和8555个反应(草本,Pitz和Westbrook的甲基癸酸甲酯(MD)机制)。在单区HCCI发动机模拟中实现了高达300倍的加速,使用与GPU计算耦合的用于GPU计算的飞行机制,而不使用GPU的常用方法。此外,使用加速化学求解器的仿真结果及时地与完整的化学求解器的相同。然后将AMC方法纳入该混合框架中,通过分组热力学 - 类似的计算单元来进一步加速在多维模拟中。结合这三种技术,我们表明,使用均匀的充电或分层充电的MD机制的2-D HCCI发动机模拟可以在配备特斯拉C2050 GPU卡的个人计算机(PC)上仅在十三个小时内完成 - 更少的时间比使用传统的CPU完全化学方法在同一PC上完成单个区域(0-D)模拟所需的。这些结果证明了通过梳理多种可用方法来实现的累积益处,以提高燃烧建模效率。在本工作中开发的算法使得能够在显着更详细地(同时施加高保真传输和化学模型而没有预先成本),而不是以前可能用于建模HCCI发动机。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号