首页> 外文会议>International Powertrains, Fuels Lubricants Meeting >Real Gas Effects in Siebers' Mixing-Limited Spray Vaporization Model
【24h】

Real Gas Effects in Siebers' Mixing-Limited Spray Vaporization Model

机译:Siembers混合限制喷雾汽化模型的真实气体效应

获取原文

摘要

Lowering diesel engine emission levels, while preserving performance, is the main demand in the development of current and future diesel engines. To fulfill it, the in-cylinder vaporization and combustion processes of the diesel spray must be well understood. An important parameter in the vaporization process of a diesel spray is the maximal penetration distance of liquid fuel (i.e., the "liquid length"). So-called mixing-limited vaporization models assume that the vaporization rate of the fuel is limited by the mixing rate of fuel and ambient gas. Such models have been shown in the literature to accurately correlate liquid lengths for moderate-to-high in-cylinder densities, i.e., in the density range relevant to modern diesel engines. Since in-cylinder pressures can reach high absolute levels, real gas effects should be considered in these models. Critical evaluation of the most commonly used mixing-limited vaporization model (Siebers, SAE 1999-01-0528) reveals that real gas effects are not implemented consistently, since compressibility factors of the fuel and ambient gas are decoupled. In this work the Siebers model is adapted to properly include real gas effects, using saturated vapor fractions from equilibrium flash calculations based on the Peng-Robinson equation of state. Results of the original and revised models are compared to experimental liquid length data from Sandia National Laboratories for various fuels, densities and temperatures. At relatively low ambient densities, the original and revised models give identical results, as expected. At higher densities, more relevant to current and future diesel engines, the difference becomes significant. Moreover, liquid lengths computed with the revised model are closer to experimental data, especially at the highest ambient pressures. It is concluded that the overall predictive capability of the Siebers model can be improved using the method to include real gas effects presented here.
机译:降低柴油发动机排放水平,同时保持性能,是当前和未来柴油发动机开发的主要需求。为了实现它,必须很好地理解柴油喷雾的缸内汽化和燃烧过程。柴油喷雾的汽化过程中的一个重要参数是液体燃料的最大渗透距离(即“液体长度”)。所谓的混合限制汽化模型假设燃料的汽化速率受燃料和环境气体的混合速率的限制。在文献中已经示出了这种模型,以准确地将液体长度与中等至高缸密度的液体长度相关,即,与现代柴油发动机相关的密度范围内。由于气缸压力可以达到高度绝对水平,因此在这些模型中应考虑真实的气体效果。对最常用的混合限制汽化模型(SAE 1999-01-0528)的批判性评估表明,由于燃料和环境气体的可压缩性因子去耦,因此不始终如一地实施实际气体效应。在这项工作中,使用基于状态的彭罗宾逊方程,使用饱和蒸气馏分来适当地包括真实气体效应。将原始和修订模型的结果与来自Sandia National Laboratories的实验液体长度数据进行比较,用于各种燃料,密度和温度。在相对较低的环境密度下,原始和修订的模型如预期的那样给出相同的结果。在更高的密度下,与当前和未来的柴油发动机更相关,差异变得显着。此外,使用修订模型计算的液体长度更接近实验数据,尤其是在最高环境压力下。得出结论,使用该方法可以改善Siepers模型的总体预测能力,包括包括这里呈现的真实气体效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号