首页> 外文会议>Conference on Head- and Helmet-Mounted Displays >Non-Contact Method for Characterization of a Rotational Table
【24h】

Non-Contact Method for Characterization of a Rotational Table

机译:用于表征旋转表的非接触方法

获取原文
获取外文期刊封面目录资料

摘要

The United States Air Force (USAF) uses and evaluates a variety of helmet-mounted trackers for incorporation into their high performance aircraft. The primary head tracker technologies commercially available are magnetic trackers, inertial trackers, and optical trackers. Each head tracker has a unique method of determining the pilot's head position within the cockpit of the aircraft. Magnetic trackers generally have a small head mounted size and minimal head weight. Because they sense a generated magnetic field, their accuracy can be affected by other magnetic fields or ferrous components within the cockpit. Inertial trackers cover the entire head motion box but require constant motion in order to accommodate drifting of the inertial sensors or a secondary system that updates the inertial system, often referred to as a hybrid system. Although optical head trackers (OHT) are immune to magnetic fields some of their limitations may be daylight/night vision goggle (NVG) compatibility issues and, depending on system configuration, may require numerous emitters and/or receivers to cover a large head motion box and provide a wide field of regard. The Dynamic Tracker Test Fixture (DTTF) was designed by the Helmet Mounted Sensory Technology (HMST) laboratory to accurately measure azimuth rotation in both static and dynamic conditions for the purpose of determining the accuracy of a variety of head trackers1'2. Before the DTTF could be used as an evaluation tool, it required characterization to determine the amount and location of any induced elevation or roll as the table rotated in azimuth. Optimally, the characterization method would not affect the DTTF's movement so a non-contact method was devised. This paper describes the characterization process and its results.
机译:美国空军(USAF)使用并评估各种头盔安装的跟踪器,以结合到他们的高性能飞机中。商业上的主要头部跟踪技术是磁性跟踪器,惯性跟踪器和光学跟踪器。每个头部跟踪器具有确定飞行器内部驾驶舱内的飞行员头部位置的独特方法。磁性跟踪器通常具有小的头部安装尺寸和最小头重量。因为它们感知产生的磁场,所以它们的精度可以受到驾驶舱内的其他磁场或黑色结构的影响。惯性跟踪器覆盖整个头部运动盒,但需要恒定运动,以便容纳惯性传感器的漂移或更新惯性系统的辅助系统,通常称为混合系统。虽然光学头跟踪器(OHT)免受磁场的影响,但它们的一些限制可能是日光/夜视滑动耻辱(NVG)兼容性问题,具体取决于系统配置,可能需要许多发射器和/或接收器来覆盖大型头部运动盒并提供广泛的关心领域。动态跟踪器测试夹具(DTTF)由头盔安装的感官技术(HMST)实验室设计,以精确测量静态和动态条件中的方位角旋转,以确定各种头部跟踪器1'2的精度。在DTTF可以用作评估工具之前,它需要表征,以确定任何诱导的升降或滚动的数量和位置,因为表中的表格旋转。最佳地,表征方法不会影响DTTF的运动,从而设计了非接触方法。本文介绍了表征过程及其结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号