首页> 外文会议>Society of Petroleum Engineers Asia Pacific oil gas conference and exhibition >3D Generalised Inversion (AVO, AI) as Direct Input to The Reservoir Model. Deepwater Exploration Offshore North West Borneo, Malaysia – A Case Study
【24h】

3D Generalised Inversion (AVO, AI) as Direct Input to The Reservoir Model. Deepwater Exploration Offshore North West Borneo, Malaysia – A Case Study

机译:3D广义反演(AVO,AI)作为储层模型的直接输入。 深水勘探海上西北婆罗洲,马来西亚 - 以案例研究

获取原文

摘要

The need to rapidly produce a notional field development plan, to reduce costs and cycle-time has driven a fast-track reservoir characterization and reservoir model-building project for one of many fields offshore North West Borneo, Malaysia. The objectives of the study have been defined based on the deliverables stated by the reservoir engineers. Considering the list of data and limited time available, an efficient generalised inversion workflow was designed to process a large volume of deepwater 3D seismic data with a single exploration well to: 1. Locate and map all sands (3D geobody identification) versus non-reservoir rocks. 2. Sub-divide reservoir sands into 4 lithofacies (well log neural net based calibration). 3. Propagate 4 lithofacies to entire reservoir volume (within two fluid types). 4. Integrate the fault framework with the sand and fluid distribution to build a first pass reservoir model. 5. Include multiple realizations to manage uncertainty. 6. Check sand connectivity and compute volumes of reserves in place. An innovative combination of 3D geostatistical and neural network techniques was used both for the well log data and for 3D seismic attributes (AVO, Acoustic impedance and dipazimuth combinations) to map the spatial distribution of the sand and their lithofacies. The results of the calibrated and quantitative generalised inversion were used in four different modes to assess the best way to build a first pass reservoir model and compute independent reserves within a short time-frame. This case study illustrates how a purposefully designed 3D/3D reservoir characterisation workflow can reduce the time required to build a first pass static reservoir model and how a similar process can be applied to other complex deepwater hydrocarbon accumulations. It focuses specifically on the different ways a static reservoir model can be built from 3D seismically derived volumes (3D/3D, Hybrid and grid-based).
机译:需要迅速产生一个名义的领域发展计划,降低成本和周期时间,为马来西亚近海西北北部的许多领域中的一个提供了快速储存的储层特征和水库模型建设项目。该研究的目标是基于水库工程师所规定的可交付成果来定义的。考虑到可用的数据列表和有限时间,旨在将大量的深水3D地震数据进行了高效的广义,可以使用单一的探索来处理:1。找到并映射所有沙子(3D Geobody识别)与非水库岩石。 2.亚分液储层砂成4个岩型(井对数神经网络的校准)。 3.将4个锂缺发物传播到整个储层体积(在两种流体类型中)。 4.将故障框架与沙子和流体分布集成,以构建第一遍储层模型。 5.包括多次实现以管理不确定性。 6.检查砂连接和计算储备的数量。用于井日志数据和3D地震属性(AVO,声阻抗和偶极子宫子组合)使用了一种创新的3D地统计和神经网络技术的组合,以映射沙子及其岩石遗传率的空间分布。校准和定量广义反演的结果用于四种不同的模式,以评估构建第一遍储层模型的最佳方式,并在短时间内计算独立储备。本案例研究说明了有目的地设计的3D / 3D储存器表征工作流程可以减少构建第一传递静态储层模型的时间以及如何将类似的过程应用于其他复杂的深水碳氢化合物累积所需的时间。它专注于不同的方式,静态储液模型可以由3D地震衍生的卷(3D / 3D,混合和基于网格)构建。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号