首页> 外文会议>Symposium on microelectromechanical structures for materials research >Failure of micron scale Single Crystal Silicon bars due to torsion developed by MEMS micro instruments
【24h】

Failure of micron scale Single Crystal Silicon bars due to torsion developed by MEMS micro instruments

机译:MEMS Micro Instruments开发的扭转引起的微晶单晶硅棒的失效

获取原文

摘要

We present an experimental study on a single crystal silicon (SCS) bar subjected to pure torsion using MEMS micro instruments. The bar is in the form of a pillar, anchored at one end to the silicon substrate. It is attached to a lever arm at the other end. The pillar has a minimum cross sectional area at its mid height. The cross section coincides with the (100) plane of SCS. Torsion is generated by applying two equal forces on the lever arm on either side of the pillar. Two micro instruments apply the forces. Each consists of an electrostatic actuator and a component that calibrates it. The actuator generates high force (≈ 200 μN at 50 V) and is capable of developing large displacements (≈ 10 μm). Calibration involves determination of the force generated by the actuator at an applied voltage, as well as the linear and higher order spring constants of its springs. Each microinstrument is thus calibrated independently. With the application of ferces by the two micro instruments, a torque is generated which twists the pillar. The angle of twist at different applied voltages are recorded using an angular scale. The corresponding torques are determined from the calibration parameters of the actuators. Torque is applied until the pillar fractures. Two such sample pillars, samples 1 and 2, are tested. There cross sectional areas are 1 and 2.25 μm~2. We find that both the pillars behave linearly until failure. The stresses prior to fracture are evaluated based on anisotropic theory of elasticity. Samples 1 and 2 fail at shear stresses of 5.6 and 2.6 GPa respectively. The fracture surfaces seem to coincide with the (111) plane of SCS.
机译:我们在使用MEMS微仪器对纯扭转进行纯扭转的单晶硅(SCS)杆上的实验研究。杆是柱的形式,锚固在一端到硅衬底。它在另一端附着在杠杆臂上。柱子在其中高的最小横截面积。横截面与SCS的(100)平面一致。通过在支柱两侧的杠杆臂上施加两个相等的力来产生扭转。两种微型仪器适用于力量。每个都包括静电执行器和校准它的组件。致动器产生高力(在50 V的≈200μN),并且能够开发大的位移(≈10μm)。校准涉及确定致动器在施加的电压下产生的力,以及其弹簧的线性和高阶弹簧常数。因此,每个微量仪器独立校准。随着两个微型仪器的逃逸,产生扭矩,扭转柱子。使用角度刻度记录不同施加电压下的扭曲角度。从致动器的校准参数确定相应的扭矩。扭矩施加到柱骨折直到柱状骨折。测试两个这样的样品柱,样品1和2。横截面积为1和2.25μm〜2。我们发现两个支柱都行为线性,直到失败。根据各向异性弹性理论评估裂缝前的应力。样品1和2分别在5.6和2.6GPa的剪切应力下失效。断裂表面似乎与SCS的(111)平面一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号