首页> 外文会议>Global Congress on Process Safety;AIChE Spring Meeting;Computing and Systems Technology Division Conference >Closed-Loop PID Re-Tuning in a Digital Twin by Re-Playing Past Setpoint and Load Disturbance Data
【24h】

Closed-Loop PID Re-Tuning in a Digital Twin by Re-Playing Past Setpoint and Load Disturbance Data

机译:通过重新播放VERSETPOINT和负载干扰数据,在数字双向中重新调整闭环PID

获取原文

摘要

The PID controller is the most widely used basic regulatory control algorithm.PID control is important in chemical engineering processes as it plays a critical role to form the basis of advanced process control and optimization systems such as model predictive control (MPC) and real-time optimization (RTO).However,its performance can vary greatly on the tuning of its three (3) parameters.There are several different types of PID tuning rules or heuristics reviewed in [1].Unfortunately,it can be demanding for operators,instrument technicians,process engineers,or inexperienced process control engineers to choose the most suitable rule and use the rule properly in the actual or physical operating system or environment.However,this demanding exercise is facilitated by excellent automated tuning selection within Distributed Control Systems (DCS),Programmable Logic Controllers (PLC),or through specialized tuning software.Tuning rules are valuable as a starting point for further manual tuning.Optimization-based PID tuning is the other option and,thanks to the advances in computational power,can be a viable approach provided the objective function and setpoint/load disturbance scenarios are properly managed.Numerical optimization techniques are divided into two different categories.One is a model gradient-based optimization and the other is non-gradient based or derivative-free optimization.However,because of the non-convexity nature of the PID tuning model,a majority of the PID tuning research has been done using non-gradient optimization algorithms such as particle swarm [2,3],and extremum seeking [4] algorithms.Another group of research study has been done using random search methods or meta-heuristics including genetic algorithm [5],for example.
机译:PID控制器是最广泛使用的基本监管控制算法.PID控制在化学工程过程中很重要,因为它起到了先进过程控制和优化系统的基础,如模型预测控制(MPC)和实时的基础优化(RTO)。但是,它的性能可以在调整三(3)个参数的调整方面有很大差异。[1]中有几种不同类型的PID调整规则或启发式审查。幸运的是,它可能要求运营商,仪器技术人员,流程工程师或缺乏经验的过程控制工程师选择最合适的规则并在实际或物理操作系统或环境中正确使用规则。但是,通过分布式控制系统(DCS)内的出色自动调谐选择,促进了这种要求艰难的运动。 ,可编程逻辑控制器(PLC)或通过专门的调整软件.Tuning规则是有价值的,作为进一步手动调谐的起点。基于优化的PID调谐是另一个选项,并且由于计算能力的进步,可以是可行的方法,只要对目标函数和设定值/负载干扰方案被正确管理。数值优化技术被分为两种不同的类别.One是基于模型的基于梯度的优化,另一个是非梯度基于的或无衍生优化。但是,由于PID调谐模型的非凸性性质,使用非梯度优化完成了大多数PID调整研究诸如粒子群[2,3]等算法和极值寻求[4]算法。例如,使用包括遗传算法[5]的随机搜索方法或元启发式进行了研究研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号